International Journal of Molecular Sciences Article Comprehensive Genome Analysis on the Novel Species Sphingomonas panacis DCY99T Reveals Insights into Iron Tolerance of Ginseng 1, , 2, 3 1 Yeon-Ju Kim * y, Joon Young Park y, Sri Renukadevi Balusamy , Yue Huo , Linh Khanh Nong 2, Hoa Thi Le 2, Deok Chun Yang 1 and Donghyuk Kim 2,4,5,* 1 College of Life Science, Kyung Hee University, Yongin 16710, Korea;
[email protected] (Y.H.);
[email protected] (D.C.Y.) 2 School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea;
[email protected] (J.Y.P.);
[email protected] (L.K.N.);
[email protected] (H.T.L.) 3 Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea;
[email protected] 4 School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea 5 Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea * Correspondence:
[email protected] (Y.-J.K.);
[email protected] (D.K.) These authors contributed equally to this work. y Received: 3 February 2020; Accepted: 13 March 2020; Published: 16 March 2020 Abstract: Plant growth-promoting rhizobacteria play vital roles not only in plant growth, but also in reducing biotic/abiotic stress. Sphingomonas panacis DCY99T is isolated from soil and root of Panax ginseng with rusty root disease, characterized by raised reddish-brown root and this is seriously affects ginseng cultivation. To investigate the relationship between 159 sequenced Sphingomonas strains, pan-genome analysis was carried out, which suggested genomic diversity of the Sphingomonas genus.