An SEM Survey of the Leaf Epidermis in Danthonioid Grasses (Poaceae: Danthonioideae)

Total Page:16

File Type:pdf, Size:1020Kb

An SEM Survey of the Leaf Epidermis in Danthonioid Grasses (Poaceae: Danthonioideae) Systematic Botany (2007), 32(1): pp. 60–70 # Copyright 2007 by the American Society of Plant Taxonomists An SEM Survey of the Leaf Epidermis in Danthonioid Grasses (Poaceae: Danthonioideae) ELIZABETH REIMER and J. HUGO COTA-SA´ NCHEZ1 Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan S7N 5E2 Canada 1Author for correspondence ([email protected]) Communicating Editor: Wendy B. Zomlefer ABSTRACT. This study comprised a scanning electron microscope survey of abaxial epidermal features in subfamily Danthonioideae, with emphasis on North American Danthonia. The survey included 21 taxa, encompassing seven genera (Austrodanthonia, Cortaderia, Danthonia, Merxmuellera, Notodanthonia, Rytidosperma, Tribolium) and the eight North American Danthonia species. We investigated micromorphological characters to determine taxonomic utility and whether North American representatives of Danthonia are distinct. We examined micromorphological epidermal features: macrohairs, bicellular microhairs, prickle hairs, silica bodies, and stomata. We found no distinguishing characters at the subfamilial level. Danthonia is characterized by the absence of abaxial stomata and presence of bicellular microhairs with basal and terminal cells of equal length and microhairs with long basal cells relative to terminal cells. Prickle hairs in the abaxial epidermal costal regions of four species of North American Danthonia are reported for the first time. KEYWORDS: Danthonioideae, epidermal characters, macrohairs, microhairs, prickle hairs, silica bodies. The Danthonioideae (Poaceae) comprise a single Stapf. (Barker et al. 2003) and Merxmuellera Conert tribe, Danthonieae, with approximately 250 species (Barker et al. 2000), are para- or polyphyletic. and 19 genera [Grass Phylogeny Working Group Historically, the generic circumscription of (GPWG) 2001]. The subfamily occurs predomi- danthonioid grasses, in particular Danthonia DC., nantly in the Southern Hemisphere and is consid- has been controversial due to the large number of ered south-temperate, but the greatest diversity is species worldwide and the wide overlap of found in Africa (nine genera and 125 species). In morphological attributes. The latest studies recog- the Australian grasslands of New South Wales, nize nine species in South America, eight in North Victoria, and Tasmania, danthonioid grasses America [D. californica, D. compressa, D. decumbens, frequently form the dominant vegetation cover D. intermedia, D. parryi, D. sericea, D. spicata, and D. and are economically important as native forage unispicata (Darbyshire 2003)], three in Europe, two species. in Africa, and two in Asia (Linder and Verboom Danthonioideae were formerly included in 1996). Of these, one species (D. decumbens) is native Aveneae (Hubbard 1934) or within Arundinoi- to Europe but is naturalized in North and South deae, a mix of unrelated taxa that do not fit into America and Australia (Darbyshire 2003) for a total other subfamilies (Watson and Dallwitz 1992). of 23 species (Linder and Verboom 1996). Molecular evidence supports the polyphyly of Early morphological studies of Danthonia re- Arundinoideae s.l. (Barker et al. 1995, 1999) vealed an extensive range of interspecific variability and the recognition of Danthonioideae at the and highlighted the need for a new taxonomic subfamilial level as a distinct lineage from Ar- scheme (deWet 1954, 1956). The taxonomic rearran- undinoideae (GPWG 2001). The monophyly of gement of Danthonia s.l. began with the formal Danthoniodeae is supported by morphological establishment of Chionochloa Zotov, Notodanthonia and molecular data. Haustorial synergids, Zotov, Erythranthera Zotov, and Pyrranthera Zotov to bilobed prophylls, and ovaries with distant describe the New Zealand taxa (Zotov 1963). In the styles are subfamilial synapomorphies (Linder following decade the South African taxa were and Verboom 1996). In addition, several circumscribed within the genera Dregeochloa Conert characters from the chloroplast genome provide (Conert 1966), Karroochloa Conert & Tu¨ rpe (Conert strong evidence for monophyly (Barker et al. and Tu¨ rpe 1969), Merxmuellera Conert (Conert 1970), 2003). Currently, the phylogenetic position and Pseudopentameris Conert (Conert 1971). Nicora of this subfamily is within the Panicoideae- (1973) placed several South American taxa in the Arundinoideae-Centothecoideae-Chloridoideae- genus Rytidosperma Steud. Furthermore, Conert Aristidoideae-Danthonioideae (PACCAD) clade (1987) argued that the basis for the separation of and sister to Aristidoideae (GPWG 2001). Though the Australian taxa from the genus Danthonia was Danthonioideae are monophyletic (GPWG 2001), unfounded because the lemma hair characters used several genera in the subfamily, including Cortaderia to separate them from Danthonia s.l. were inconsis- 60 2007] REIMER & COTA-SA´ NCHEZ: SEM OF DANTHONIOID GRASSES 61 tent. More recently, Linder and Verboom (1996) characters using scanning electron microscopy advocated the recognition of Austrodanthonia H. P. (SEM) to investigate East African grasses (Palmer Linder, Joycea H. P. Linder, Notochloe Domin., and and Tucker 1981, 1983; Palmer et al. 1985; Palmer Plinthanthesis Steud. to describe Australasian and Gerbeth-Jones 1986, 1988) have proven the danthonioid grasses and recognized the African taxonomic and phylogenetic utility of this tech- genus Schismus P. Beauv. The same study supported nique, which provides detailed three-dimensional separation of Danthonia and Rytidosperma based on views. SEM has also been important in investigat- morphological and anatomical data, such as the ing the morphology of silica bodies, a common presence of tufted lemma hairs in Rytidosperma and type of phytolith in plants. These structures are cleistogamous florets in the upper leaf sheaths of mineral deposits that form inside specialized Danthonia. A more recent re-examination of the epidermal cells in the Poaceae (Piperno and relationships within danthonioid grasses identified Pearsall 1998). The significance and implications seven informal groups: the basal Merxmuellera of silica bodies in the taxonomy of grasses have assemblage and the Pentaschistis, Pseudopentameris, been widely addressed. Certain silica body shapes Chionochloa, Cortaderia, Rytidosperma, and Danthonia are characteristic of grass subfamilies and tribes. clades (Barker et al. 2000). Previous studies have examined leaf blades in Despite the extensive work in para- or poly- other genera and species within Danthonioideae phyletic taxa, such as Merxmuellera and Cortaderia, (Ellis 1980a, 1980b, 1985; Barker and Ellis 1991; the intrageneric taxonomic boundaries in the sub- Barker1993,1995);however,severalrelevant family remain unclear (Barker et al. 2000, 2003). taxonomic and phylogenetic questions remain Likewise, studies of the subfamily have not in- unanswered. Due to taxonomic complexity, the cluded sufficient taxonomic sampling within paucity of morphological synapomorphies, and the Danthonia to adequately test its monophyly. Wright relatively unexplored micromorphological struc- (1984) suggested that Danthonia is monophyletic, tures, we undertook an SEM survey of epidermal but the morphological and anatomical traits sup- features in danthonioid representatives with em- porting the clade, such as scattered lemma hairs, phasis on North American representatives of the costal short cells in rows, undivided phloem, and genus Danthonia to identify potentially informative the presence of bulliform cells, are not unambig- characters. Our primary objectives were 1) to uous synapomorphies. More recently, two synapo- investigate micromorphological characters to as- morphies have been reported for Danthonia, the sess their taxonomic value at the generic and presence of cleistogenes in the lower leaf sheaths specific levels and 2) to determine whether the and a base chromosome number of x 5 18 (Linder North American representatives of Danthonia can and Verboom 1996), but there are some exceptions. be distinguished based on microstructures of the For example, cleistogenes are rarely present in D. leaf epidermis. Our study represents the first intermedia (Darbyshire 2003), and an unusual formal SEM examination of leaf epidermal char- chromosome count of 2n 5 31 was reported in D. acters of danthonioid grasses. spicata (Darbyshire and Cayouette 1989). Over the last four decades, micromorphological MATERIALS AND METHODS characters of the leaf epidermis have been scruti- Taxonomic Sampling. Twenty-one taxa, including seven nized in several plant groups. These attributes danthonioid genera (Austrodanthonia, Cortaderia, Danthonia, have been informative at various taxonomic levels Merxmuellera, Notodanthonia, Rytidosperma, Tribolium Desv.) as recognized by Barker et al. (2000) were investigated in this and valuable to differentiate among groups of study (Appendix 1). Our sampling encompasses the eight extant taxa with putative relatives available in the North American Danthonia species: D. decumbens [syn. fossil record (Stace 1984). Watson and Dallwitz Sieglingia decumbens (L.) Bernh.] introduced from Europe, (1992 onwards) report detailed descriptions of the and the seven native species (D. californica, D. compressa, D. intermedia, D. parryi, D. sericea, D. spicata, D. unispicata; leaf epidermis in numerous taxa, emphasizing the Darbyshire 2003). In addition, D. filifolia [syn. Danthonia significance of these characters in the systematics secundiflora subsp. secundiflora J. Presl.], a
Recommended publications
  • High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)
    High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae) Yun-Jie Zhang1,2,3., Peng-Fei Ma1,2,3., De-Zhu Li1,2* 1 Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China, 2 Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People’s Republic of China, 3 Graduate University of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract Background: Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings: Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with $0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses.
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Species of the Box-Gum Woodlands and Derived Native Grasslands
    White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland Ecological Community Species List White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland Ecological Community Species List This species list is designed to provide information about plant species that can be found in the White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland ecological community listed under the Environment Protection and Biodiversity Conservation Act 1999. The species list was developed to complement the Listing Information Guide, and should be read in that context. It provides information on scientific and common names of the species, the kind of plant the species is, whether it is an ‘important’ species for the purposes of this ecological community and whether it is exotic or native, perennial or annual. The list is not exhaustive and not all of the species listed will occur in every patch of White Box-Yellow Box-Blakely’s Red Gum Grassy Woodland and Derived Native Grassland. If there are any species that you think should be added to the list, removed from the list, or that are categorised incorrectly, please contact [email protected]. As such, this document may change over time and you should check that you are referring to the most recent version of the list. Caveat: This list has been compiled from a range of sources. While reasonable efforts have been made to ensure the accuracy of the information, no guarantee is given, nor responsibility taken, by the Commonwealth for its accuracy, currency or completeness.
    [Show full text]
  • Contrasting Bacterial Communities in Two Indigenous Chionochloa (Poaceae) Grassland Soils in New Zealand
    RESEARCH ARTICLE Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand Jocelyn C. Griffith1, William G. Lee2, David A. Orlovich1, Tina C. Summerfield1* 1 Department of Botany, University of Otago, Dunedin, New Zealand, 2 Landcare Research, Dunedin, New Zealand * [email protected] a1111111111 a1111111111 Abstract a1111111111 a1111111111 The cultivation of grasslands can modify both bacterial community structure and impact on a1111111111 nutrient cycling as well as the productivity and diversity of plant communities. In this study, two pristine New Zealand grassland sites dominated by indigenous tall tussocks (Chiono- chloa pallens or C. teretifolia) were examined to investigate the extent and predictability of variation of the bacterial community. The contribution of free-living bacteria to biological OPEN ACCESS nitrogen fixation is predicted to be ecologically significant in these soils; therefore, the diazo- Citation: Griffith JC, Lee WG, Orlovich DA, trophic community was also examined. The C. teretifolia site had N-poor and poorly-drained Summerfield TC (2017) Contrasting bacterial peaty soils, and the C. pallens had N-rich and well-drained fertile soils. These soils also dif- communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand. PLoS fer in the proportion of organic carbon (C), Olsen phosphorus (P) and soil pH. The nutrient- ONE 12(6): e0179652. https://doi.org/10.1371/ rich soils showed increased relative abundances of some copiotrophic bacterial taxa (includ- journal.pone.0179652 ing members of the Proteobacteria, Bacteroidetes and Firmicutes phyla). Other copiotrophs, Editor: Brenda A Wilson, University of Illinois at Actinobacteria and the oliogotrophic Acidobacteria showed increased relative abundance in Urbana-Champaign, UNITED STATES nutrient-poor soils.
    [Show full text]
  • Full Article
    Volume 3(4): 599 TELOPEA Publication Date: 12 April 1990 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19904909 Journal of Plant Systematics 6 DOPII(liPi Tm st plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea Vol. 3(4): 599 (1990) 599 SHORT COMMUNICATION Amphibromus nervosus (Poaceae), an earlier combination and further synonyms Arthur Chapman, Bureau of Flora & Fauna, Canberra, has kindly pointed out to me that the combination Amphibromus nervosus (J. D. Hook.) Baillon had been made in 1893, earlier than the combination made by G. C. Druce re­ ported in our revision of the genus Amphibromus in Australia (Jacobs and Lapinpuro 1986). Baillon's combination had been overlooked by Index Kewensis and by the Chase Index (Chase and Niles 1962). The full citation is: Amphibromus nervosus (J. D. Hook.) Baillon, Histoire des Plantes 12: 203 (1893). BASIONYM: Danthonia nervosa J. D. Hook., Fl.FI. Tasm. 2: 121, pI.pl. 163A (1858). Hooker based his combination on the illegitimate Avena nervosa R. Br. (see Jacobs and Lapinpuro 1986 for further comment). Amphibromus nervosus (1. D. Hook.) G. C. Druce then becomes a superfluous combina­ tion and is added to the synonymy. Arthur Chapman also kindly pointed out a synonym that to the best of my knowledge has not been used beyond its initial publication. This synonym is: Avenastrum nervosum Vierh., Verhandlungen der Gesellschaft Deutscher Naturforscher und Artze 85. Versammlung zu Wien (Leipzig) 1: 672 (1913). This name was based on the illegitimate Avena nervosa R.
    [Show full text]
  • Chionochloa Flavicans F. Temata
    Chionochloa flavicans f. temata COMMON NAME Te Mata Peak Snow Tussock SYNONYMS None (first described in 1991) FAMILY Poaceae AUTHORITY Chionochloa flavicans f. temata Connor FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Grasses CHROMOSOME NUMBER 2n = 42 CURRENT CONSERVATION STATUS 2012 | At Risk – Naturally Uncommon | Qualifiers: OL PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon | Qualifiers: OL 2004 | Range Restricted DISTRIBUTION Endemic. North Island, Hawkes Bay, where it is only known from Te Mata Peak, Havelock North. HABITAT Confined to limestone cliffs where it can at times be locally dominant. FEATURES Tall, rather stout, often sprawling, flabellate tussock with persistent leaves and sheaths. Leaf-sheath to 150 mm, pinkish or purplish, chartaceous, entire, becoming fibrous, keeled, glabrous or with a few long hairs, apical tuft of hairs to 1 mm. Ligule to 0.7 mm. Leaf-blade to 750 × 8 mm, dark green, often distinctly glaucous, keeled, persistent, glabrous except for some short hairs above ligule and prickle-teeth on margins and abaxially at apex. Culm to 1.5 m, internodes glabrous. Inflorescence to 300 mm, clavate, dense and compact, not naked below; rachis smooth below, branches and pedicels densely scabrid and with some long hairs at branch axils. Spikelets of up to 4 distant florets. Glumes to 4 mm, broad, shallowly bifid, sometimes purpled, margins ciliate, prickle-teeth adaxially above, < nearest lemma lobes; lower 3-nerved, upper 5-nerved. Lemma to 4 mm, shorter and broader than typical form; hairs dense on margin, few aside central nerve, rarely reaching sinus, prickle-teeth above adaxially and abaxially on nerves; lateral lobes to 0.2 mm, conspicuously awned adjacent to a small lobe; central awn to 6 mm, reflexed, column absent.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • 22. Tribe ERAGROSTIDEAE Ihl/L^Ä Huameicaozu Chen Shouliang (W-"^ G,), Wu Zhenlan (ß^E^^)
    POACEAE 457 at base, 5-35 cm tall, pubescent. Basal leaf sheaths tough, whit- Enneapogon schimperianus (A. Richard) Renvoize; Pap- ish, enclosing cleistogamous spikelets, finally becoming fi- pophorum aucheri Jaubert & Spach; P. persicum (Boissier) brous; leaf blades usually involute, filiform, 2-12 cm, 1-3 mm Steudel; P. schimperianum Hochstetter ex A. Richard; P. tur- wide, densely pubescent or the abaxial surface with longer comanicum Trautvetter. white soft hairs, finely acuminate. Panicle gray, dense, spike- Perennial. Culms compactly tufted, wiry, erect or genicu- hke, linear to ovate, 1.5-5 x 0.6-1 cm. Spikelets with 3 fiorets, late, 15^5 cm tall, pubescent especially below nodes. Basal 5.5-7 mm; glumes pubescent, 3-9-veined, lower glume 3-3.5 mm, upper glume 4-5 mm; lowest lemma 1.5-2 mm, densely leaf sheaths tough, lacking cleistogamous spikelets, not becom- villous; awns 2-A mm, subequal, ciliate in lower 2/3 of their ing fibrous; leaf blades usually involute, rarely fiat, often di- length; third lemma 0.5-3 mm, reduced to a small tuft of awns. verging at a wide angle from the culm, 3-17 cm, "i-^ mm wide, Anthers 0.3-0.6 mm. PL and &. Aug-Nov. 2« = 36. pubescent, acuminate. Panicle olive-gray or tinged purplish, contracted to spikelike, narrowly oblong, 4•18 x 1-2 cm. Dry hill slopes; 1000-1900 m. Anhui, Hebei, Liaoning, Nei Mon- Spikelets with 3 or 4 florets, 8-14 mm; glumes puberulous, (5-) gol, Ningxia, Qinghai, Shanxi, Xinjiang, Yunnan [India, Kazakhstan, 7-9-veined, lower glume 5-10 mm, upper glume 7-11 mm; Kyrgyzstan, Mongolia, Pakistan, E Russia; Africa, America, SW Asia].
    [Show full text]
  • Chapter 5 Phylogeny of Poaceae Based on Matk Gene Sequences
    Chapter 5 Phylogeny of Poaceae Based on matK Gene Sequences 5.1 Introduction Phylogenetic reconstruction in the Poaceae began early in this century with proposed evolutionary hypotheses based on assessment of existing knowledge of grasses (e.g., Bew, 1929; Hubbard 1948; Prat, 1960; Stebbins, 1956, 1982; Clayton, 1981; Tsvelev, 1983). Imperical approaches to phylogenetic reconstruction of the Poaceae followed those initial hypotheses, starting with cladistic analyses of morphological and anatomical characters (Kellogg and Campbell, 1987; Baum, 1987; Kellogg and Watson, 1993). More recently, molecular information has provided the basis for phylogenetic hypotheses in grasses at the subfamily and tribe levels (Table 5.1). These molecular studies were based on information from chloroplast DNA (cpDNA) restriction sites and DNA sequencing of the rbcL, ndhF, rps4, 18S and 26S ribosomal DNA (rDNA), phytochrome genes, and the ITS region (Hamby and Zimmer, 1988; Doebley et al., 1990; Davis and Soreng, 1993; Cummings, King, and Kellogg, 1994; Hsiao et al., 1994; Nadot, Bajon, and Lejeune, 1994; Barker, Linder, and Harley, 1995; Clark, Zhang, and Wendel, 1995; Duvall and Morton, 1996; Liang and Hilu, 1996; Mathews and Sharrock, 1996). Although these studies have refined our concept of grass evolution at the subfamily level and, to a certain degree, at the tribal level, major disagreements and questions remain to be addressed. Outstanding discrepancies at the subfamily level include: 1) Are the pooids, bambusoids senso lato, or herbaceous bamboos the
    [Show full text]
  • Edible Seeds and Grains of California Tribes
    National Plant Data Team August 2012 Edible Seeds and Grains of California Tribes and the Klamath Tribe of Oregon in the Phoebe Apperson Hearst Museum of Anthropology Collections, University of California, Berkeley August 2012 Cover photos: Left: Maidu woman harvesting tarweed seeds. Courtesy, The Field Museum, CSA1835 Right: Thick patch of elegant madia (Madia elegans) in a blue oak woodland in the Sierra foothills The U.S. Department of Agriculture (USDA) prohibits discrimination in all its pro- grams and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sex- ual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Acknowledgments This report was authored by M. Kat Anderson, ethnoecologist, U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) and Jim Effenberger, Don Joley, and Deborah J. Lionakis Meyer, senior seed bota- nists, California Department of Food and Agriculture Plant Pest Diagnostics Center. Special thanks to the Phoebe Apperson Hearst Museum staff, especially Joan Knudsen, Natasha Johnson, Ira Jacknis, and Thusa Chu for approving the project, helping to locate catalogue cards, and lending us seed samples from their collections.
    [Show full text]
  • DRAFT OAEC NATIVE PLANT LIST FERNS and FERN ALLIES
    DRAFT OAEC NATIVE PLANT LIST FERNS and FERN ALLIES: Blechnaceae: Deer Fern Family Giant Chain Fern Woodwardia fimbriata Dennstaedtiaceae: Bracken Fern Bracken Pteridium aquilinum Dryopteridaceae: Wood Fern Family Lady Fern Athyrium filix-femina Wood Fern Dryopteris argutanitum Western Sword Fern Polystichum muitum Polypodiaceae: Polypody Family California Polypody Polypodium californicum Pteridaceae: Brake Family California Maiden-Hair Adiantum jordanii Coffee Fern Pellaea andromedifolia Goldback Fern Pentagramma triangularis Isotaceae: Quillwort Family Isoetes sp? Nuttallii? Selaginellaceae: Spike-Moss Family Selaginella bigelovii GYMNOPSPERMS Pinaceae: Pine Family Douglas-Fir Psuedotsuga menziesii Taxodiaceae: Bald Cypress Family Redwood Sequoia sempervirens ANGIOSPERMS: DICOTS Aceraceae: Maple Family Big-Leaf Maple Acer macrophyllum Box Elder Acer negundo Anacardiaceae: Sumac Family Western Poison Oak Toxicodendron diversilobum Apiaceae: Carrot Family Lomatium( utriculatum) or (carulifolium)? Pepper Grass Perideridia kelloggii Yampah Perideridia gairdneri Sanicula sp? Sweet Cicely Osmorhiza chilensis Unidentified in forest at barn/deer fence gate Angelica Angelica tomentosa Apocynaceae: Dogbane or Indian Hemp Family Apocynum cannabinum Aristolochiaceae Dutchman’s Pipe, Pipevine Aristolochia californica Wild Ginger Asarum caudatum Asteraceae: Sunflower Family Grand Mountain Dandelion Agoseris grandiflora Broad-leaved Aster Aster radulinus Coyote Brush Baccharis pilularis Pearly Everlasting Anaphalis margaritacea Woodland Tarweed Madia
    [Show full text]
  • Ornamental Grasses for the Midsouth Landscape
    Ornamental Grasses for the Midsouth Landscape Ornamental grasses with their variety of form, may seem similar, grasses vary greatly, ranging from cool color, texture, and size add diversity and dimension to season to warm season grasses, from woody to herbaceous, a landscape. Not many other groups of plants can boast and from annuals to long-lived perennials. attractiveness during practically all seasons. The only time This variation has resulted in five recognized they could be considered not to contribute to the beauty of subfamilies within Poaceae. They are Arundinoideae, the landscape is the few weeks in the early spring between a unique mix of woody and herbaceous grass species; cutting back the old growth of the warm-season grasses Bambusoideae, the bamboos; Chloridoideae, warm- until the sprouting of new growth. From their emergence season herbaceous grasses; Panicoideae, also warm-season in the spring through winter, warm-season ornamental herbaceous grasses; and Pooideae, a cool-season subfamily. grasses add drama, grace, and motion to the landscape Their habitats also vary. Grasses are found across the unlike any other plants. globe, including in Antarctica. They have a strong presence One of the unique and desirable contributions in prairies, like those in the Great Plains, and savannas, like ornamental grasses make to the landscape is their sound. those in southern Africa. It is important to recognize these Anyone who has ever been in a pine forest on a windy day natural characteristics when using grasses for ornament, is aware of the ethereal music of wind against pine foliage. since they determine adaptability and management within The effect varies with the strength of the wind and the a landscape or region, as well as invasive potential.
    [Show full text]