Robust Within Groups Anova: Dealing with Missing Values

Total Page:16

File Type:pdf, Size:1020Kb

Robust Within Groups Anova: Dealing with Missing Values ROBUST WITHIN GROUPS ANOVA: DEALING WITH MISSING VALUES Jinxia Ma1, Rand R. Wilcox1 1Dept. of Psychology, University of Southern California, Los Angeles, CA 90089-1061, United States Abstract Ludbrook [18] suggested using a permutation test The paper considers the problem of testing the hy- when comparing groups based on means. A positive pothesis that J ≥ 2 dependent groups have equal pop- feature of this permutation test is that when testing the ulation measures of location when using a robust esti- hypothesis of identical distributions, the exact probabil- mator and there are missing values. For J = 2, meth- ity of a Type I error can be determined. But as a method ods have been studied based on trimmed means. But for testing (1), it can be unsatisfactory even when there the methods are not readily extended to the case J > 2. are no missing values and the goal is to compare mea- Here, two alternative test statistics were considered, one sures of location (e.g., [2, 25]). of which performed poorly in some situations. The one Let (X1;Y1);:::; (Xn;Yn) be a random sample of size method that performed well in simulations is based on n from some bivariate distribution and let Di = Xi − Yi a very simple test statistic with the null distribution (i = 1; : : : ; n). Let µD be the corresponding popula- approximated via a basic bootstrap technique. The tion mean of D. An approach to missing values using method uses all of the available data to estimate each an empirical likelihood method, based on single imputa- of the marginal (population) trimmed means. Other ro- tion, was derived by Liang et al. [15], which is readily bust measures of location were considered, for which im- adapted to the problem of computing a confidence inter- putation methods have been derived, but in simulations val for µD even when there are no missing values. But the actual Type I error probability was estimated to for heavy-tailed distributions, it can be unsatisfactory. be substantially less than the nominal level, even when For example, suppose D has the contaminated normal there are no missing values. distribution Keywords Trimmed means, Minimum Covariance Determinant, OGK estimator, TBS estimator, Boot- H(x) = (1 − ")Φ(x) + "Φ(x=10); (2) strap methods, Imputation where Φ(x) is the cumulative distribution function of the standard normal distribution. Based on the simulation with 5000 replications, if the sample size is n = 100;" = 1 Introduction 0:1, the actual Type I error is estimated to be 0.084 when testing at the .05 level. Using the Bartlett-correction Consider J ≥ 2 dependent groups and let θj (j = studied by DiCiccio et al. [8] ,the actual probability 1;:::;J) be some robust measure of location associated coverage is 0.078. Here it was found that even with a with the jth marginal distribution. The paper considers few missing values, the probability coverage deteriorates, the problem of testing and so this approach was abandoned. Even when there are no missing values, there are H0 : θ1 = θ2 = ··· = θJ (1) well known concerns about inferential methods based when there are missing values. A simple strategy is to on means. A basic concern is that the population mean use a complete case analysis. That is, exclude any rows is not robust (e.g., [11, 30]. Moreover, the sample mean of data where there are missing values and analyze the has a breakdown point of only 1=n, roughly meaning data that remain. But this approach might result in a that even a single outlier can result in the sample mean reduction in power when testing hypotheses (e.g., [15]). being arbitrarily large or small. Also, outliers can result For the special case where θj is taken to be the in very poor power relative to methods based on some population mean, various methods for handling miss- robust measure of location (e.g., [34]). Indeed, even a ing observations have been derived and studied (e.g., small departure from normality can result in a relatively [1, 20, 5, 29]. Approaches include a maximum likeli- large standard error and poor power. hood method [12, 13], a weighted adjustment method [4], One robust estimator that has been studied exten- single imputation [23] and multiple imputation [28, 16]. sively is a 20% trimmed mean. A reason for considering When testing (1), a simple strategy is to impute missing 20% trimming, rather than other amounts of trimming, values and then use some conventional test statistic in is that its efficiency compares well to the mean under the usual manner. It is known, however, that this ap- normality, but unlike the mean, its standard error re- proach can be unsatisfactory, as noted for example by mains relatively small as we move toward more heavy- Liang et al. [15] as well as Wang and Rao [32]. tailed distributions [26]. Consequently, under normality, 1 power is nearly the same as hypothesis testing methods For the jth column of the bootstrap sample just gener- ^ ∗ based on means. For J = 2, methods for handling miss- ated, compute Xtj , the 20% trimmed mean. Note that ing values, when using a 20% trimmed mean, have been all of the non-missing values are being used. Then com- studied that perform well in simulations [33]. But it pute is unclear how these methods might be generalized to ∗ X ¯ ∗ ¯ ∗ 2 J > 2. (Arguments for considering other robust esti- Q = (Xtj − Xt ) ; mators can be made, but for the situation at hand they ¯ ∗ P ¯ ∗ were found to be unsatisfactory for reasons outlined in where Xt = Xtj =J. Repeat this process B times ∗ ∗ Section 2.0.1.) yielding Q1;:::;QB. Put these B values in ascending Here, two test statistics were considered coupled with ∗ ∗ order yielding Q(1) ≤ ::: ≤ Q(B). Let α be the nominal several robust measures of location. Among these meth- Type I error probability and reject the hypothesis of ods, only one performed well in simulations in terms of ∗ equal 20% trimmed mean if Q > Q(c), where c = (1 − controlling the probability of a Type I error in a reason- α)B rounded to the nearest integer. ably accurate manner. Details of this method are given Here, B = 599 was used, which has been found to per- in section 2 along with a brief outline of the methods form well, in terms of controlling the Type I error prob- that were considered and abandoned. ability, when testing other hypotheses based on some robust estimator [34]. But in terms of power, a larger choice for B might have practical value. Racine and 2 Methods That Were Consid- MacKinnon [22] discuss this issue at length. (Also see ered [14].) Davidson and MacKinnon [7] proposed a pretest procedure for choosing B. The one measure of location that performed well in simulations is the 20% trimmed mean. Momentarily 2.0.1 Alternative Methods That Performed consider a single random sample: X1;:::;Xn. The γ- Poorly trimmed mean is computed as follows. Let X(1) ≤ ::: ≤ X(n) be the values written in ascending order and let Although the trimmed mean used here guards against g = [nγ]; 0 ≤ γ < 0:5, where [nγ] is the greatest integer the deleterious effects of outliers among the marginal dis- less than or equal to nγ. Then the γ-trimmed mean is tributions, a possible criticism is that it does not deal with outliers in a manner that takes into account the n−g 1 X overall structure of the data. There are several (affine X¯ = X : t n − 2g (i) equivariant) estimators that deal with this issue (e.g., i=g+1 Wilcox, 2012, section 6.3). For some of these estimators, A 20% trimmed mean corresponds to γ = 0:2. imputation methods have been derived (e.g., [31, 6]). Now consider a random sample from some unknown J- So a simple strategy would be to impute missing val- variate distribution (Xi1;:::;XiJ ), i = 1; : : : ; n. Rather ues and then use the test statistic Q in conjunction than discard any row of data having one or more missing with the bootstrap method just described. However, values, all of the data are used to compute each marginal even with no missing values, control over the Type I trimmed mean. So if the jth column of data has no error probability was found to be poor. The estima- missing values, all n values are used even if there are tors considered were the minimum covariance determi- missing values in some other column. If the jth column nant estimator (see, for example, [27]), the Donoho and contains say m missing values, then the trimmed mean Gasko [9] trimmed mean, the orthogonal Gnanadesikan- is based on the n − m values that are available. Kettenring (OGK) estimator derived by Maronna and To test (1), where now θ is taken to be the population Zamar [19], and the translated-biweight S-estimator pro- trimmed mean, the test statistic is posed by Rocke [24]. A basic concern is that when using Q and testing at the .05 level, the actual level can be less X ¯ ¯ 2 Q = (Xtj − Xt) ; than .01 even with n = 60. (When using the method in [6], via the R package GSE, bootstrap samples were en- ¯ P ¯ ¯ where Xt = Xtj=J and Xtj is the trimmed mean for countered where the measure of location could not be the jth group. The strategy is to approximate the null compute.) Consequently, further details are omitted. distribution of Q via a bootstrap method. In more de- An alternative hypothesis testing method, based on ^ tail, let Cij = Xij − Xtj. That is, shift the empirical trimmed methods, was considered, details of which can distributions so that the null hypothesis is true.
Recommended publications
  • Spatial Duration Data for the Spatial Re- Gression Context
    Missing Data In Spatial Regression 1 Frederick J. Boehmke Emily U. Schilling University of Iowa Washington University Jude C. Hays University of Pittsburgh July 15, 2015 Paper prepared for presentation at the Society for Political Methodology Summer Conference, University of Rochester, July 23-25, 2015. 1Corresponding author: [email protected] or [email protected]. We are grateful for funding provided by the University of Iowa Department of Political Science. Com- ments from Michael Kellermann, Walter Mebane, and Vera Troeger greatly appreciated. Abstract We discuss problems with missing data in the context of spatial regression. Even when data are MCAR or MAR based solely on exogenous factors, estimates from a spatial re- gression with listwise deletion can be biased, unlike for standard estimators with inde- pendent observations. Further, common solutions for missing data such as multiple im- putation appear to exacerbate the problem rather than fix it. We propose a solution for addressing this problem by extending previous work including the EM approach devel- oped in Hays, Schilling and Boehmke (2015). Our EM approach iterates between imputing the unobserved values and estimating the spatial regression model using these imputed values. We explore the performance of these alternatives in the face of varying amounts of missing data via Monte Carlo simulation and compare it to the performance of spatial regression with listwise deletion and a benchmark model with no missing data. 1 Introduction Political science data are messy. Subsets of the data may be missing; survey respondents may not answer all of the questions, economic data may only be available for a subset of countries, and voting records are not always complete.
    [Show full text]
  • Missing Data Module 1: Introduction, Overview
    Missing Data Module 1: Introduction, overview Roderick Little and Trivellore Raghunathan Course Outline 9:00-10:00 Module 1 Introduction and overview 10:00-10:30 Module 2 Complete-case analysis, including weighting methods 10:30-10:45 Break 10:45-12:00 Module 3 Imputation, multiple imputation 1:30-2:00 Module 4 A little likelihood theory 2:00-3:00 Module 5 Computational methods/software 3:00-3:30 Module 6: Nonignorable models Module 1:Introduction and Overview Module 1: Introduction and Overview • Missing data defined, patterns and mechanisms • Analysis strategies – Properties of a good method – complete-case analysis – imputation, and multiple imputation – analysis of the incomplete data matrix – historical overview • Examples of missing data problems Module 1:Introduction and Overview Module 1: Introduction and Overview • Missing data defined, patterns and mechanisms • Analysis strategies – Properties of a good method – complete-case analysis – imputation, and multiple imputation – analysis of the incomplete data matrix – historical overview • Examples of missing data problems Module 1:Introduction and Overview Missing data defined variables If filled in, meaningful for cases analysis? • Always assume missingness hides a meaningful value for analysis • Examples: – Missing data from missed clinical visit( √) – No-show for a preventive intervention (?) – In a longitudinal study of blood pressure medications: • losses to follow-up ( √) • deaths ( x) Module 1:Introduction and Overview Patterns of Missing Data • Some methods work for a general
    [Show full text]
  • Coping with Missing Data in Randomized Controlled Trials
    EVALUATION TECHNICAL ASSISTANCE BRIEF for OAH & ACYF Teenage Pregnancy Prevention Grantees May 2013 • Brief 3 Coping with Missing Data in Randomized Controlled Trials issing data in randomized controlled trials (RCTs) can respondents3 if there are no systematic differences between Mlead to biased impact estimates and a loss of statistical respondents in the treatment group and respondents in the power. In this brief we describe strategies for coping with control group. However, if respondents in the treatment group missing data in RCTs.1 Specifically, we discuss strategies to: are systematically different from respondents in the control group, then the impact we calculate for respondents lacks ● Describe the extent and nature of missing data. We suggest causal validity. We call the difference between the calculated ways to provide a clear and accurate accounting of the extent impact for respondents and the true impact for respondents and nature of missing outcome data. This will increase the “causal validity bias.” This type of bias is the focus of the transparency and credibility of the study, help with interpret- evidence review of teen pregnancy prevention programs ing findings, and also help to select an approach for addressing (Mathematica Policy Research and Child Trends 2012). missing data in impact analyses. We suggest conducting descriptive analyses designed to assess ● Address missing data in impact analyses. Missing outcome the potential for both types of bias in an RCT. or baseline data pose mechanical and substantive problems when conducting impact analyses. The mechanical problem With regard to generalizability, we suggest conducting two is that mathematical operations cannot be performed on analyses.
    [Show full text]
  • Monte Carlo Likelihood Inference for Missing Data Models
    MONTE CARLO LIKELIHOOD INFERENCE FOR MISSING DATA MODELS By Yun Ju Sung and Charles J. Geyer University of Washington and University of Minnesota Abbreviated title: Monte Carlo Likelihood Asymptotics We describe a Monte Carlo method to approximate the maximum likeli- hood estimate (MLE), when there are missing data and the observed data likelihood is not available in closed form. This method uses simulated missing data that are independent and identically distributed and independent of the observed data. Our Monte Carlo approximation to the MLE is a consistent and asymptotically normal estimate of the minimizer ¤ of the Kullback- Leibler information, as both a Monte Carlo sample size and an observed data sample size go to in¯nity simultaneously. Plug-in estimates of the asymptotic variance are provided for constructing con¯dence regions for ¤. We give Logit-Normal generalized linear mixed model examples, calculated using an R package that we wrote. AMS 2000 subject classi¯cations. Primary 62F12; secondary 65C05. Key words and phrases. Asymptotic theory, Monte Carlo, maximum likelihood, generalized linear mixed model, empirical process, model misspeci¯cation 1 1. Introduction. Missing data (Little and Rubin, 2002) either arise naturally|data that might have been observed are missing|or are intentionally chosen|a model includes random variables that are not observable (called latent variables or random e®ects). A mixture of normals or a generalized linear mixed model (GLMM) is an example of the latter. In either case, a model is speci¯ed for the complete data (x; y), where x is missing and y is observed, by their joint den- sity f(x; y), also called the complete data likelihood (when considered as a function of ).
    [Show full text]
  • Missing Data
    4 Missing Data Paul D. Allison INTRODUCTION they have spent a great deal time, money and effort in collecting. And so, many methods for Missing data are ubiquitous in psychological ‘salvaging’ the cases with missing data have research. By missing data, I mean data that become popular. are missing for some (but not all) variables For a very long time, however, missing and for some (but not all) cases. If data are data could be described as the ‘dirty little missing on a variable for all cases, then that secret’ of statistics. Although nearly everyone variable is said to be latent or unobserved. had missing data and needed to deal with On the other hand, if data are missing on the problem in some way, there was almost all variables for some cases, we have what nothing in the textbook literature to pro- is known as unit non-response, as opposed vide either theoretical or practical guidance. to item non-response which is another name Although the reasons for this reticence are for the subject of this chapter. I will not deal unclear, I suspect it was because none of the with methods for latent variables or unit non- popular methods had any solid mathematical response here, although some of the methods foundation. As it turns out, all of the most we will consider can be adapted to those commonly used methods for handling missing situations. data have serious deficiencies. Why are missing data a problem? Because Fortunately, the situation has changed conventional statistical methods and software dramatically in recent years.
    [Show full text]
  • Parameter Estimation in Stochastic Volatility Models with Missing Data Using Particle Methods and the Em Algorithm
    PARAMETER ESTIMATION IN STOCHASTIC VOLATILITY MODELS WITH MISSING DATA USING PARTICLE METHODS AND THE EM ALGORITHM by Jeongeun Kim BS, Seoul National University, 1998 MS, Seoul National University, 2000 Submitted to the Graduate Faculty of the Department of Statistics in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2005 UNIVERSITY OF PITTSBURGH DEPARTMENT OF STATISTICS This dissertation was presented by Jeongeun Kim It was defended on April 22, 2005 and approved by David S. Stoffer, Professor Ori Rosen, Professor Wesley Thompson, Professor Anthony Brockwell, Professor Dissertation Director: David S. Stoffer, Professor ii Copyright c by Jeongeun Kim 2005 iii PARAMETER ESTIMATION IN STOCHASTIC VOLATILITY MODELS WITH MISSING DATA USING PARTICLE METHODS AND THE EM ALGORITHM Jeongeun Kim, PhD University of Pittsburgh, 2005 The main concern of financial time series analysis is how to forecast future values of financial variables, based on all available information. One of the special features of financial variables, such as stock prices and exchange rates, is that they show changes in volatility, or variance, over time. Several statistical models have been suggested to explain volatility in data, and among them Stochastic Volatility models or SV models have been commonly and successfully used. Another feature of financial variables I want to consider is the existence of several missing data. For example, there is no stock price data available for regular holidays, such as Christmas, Thanksgiving, and so on. Furthermore, even though the chance is small, stretches of data may not available for many reasons. I believe that if this feature is brought into the model, it will produce more precise results.
    [Show full text]
  • Statistical Inference in Missing Data by MCMC And
    I Takahashi, M 2017 Statistical Inference in Missing Data by MCMC and CODATA '$7$6&,(1&( S Non-MCMC Multiple Imputation Algorithms: Assessing the Effects of U -2851$/ Between-Imputation Iterations. Data Science Journal, 16: 37, pp. 1–17, DOI: https://doi.org/10.5334/dsj-2017-037 RESEARCH PAPER Statistical Inference in Missing Data by MCMC and Non-MCMC Multiple Imputation Algorithms: Assessing the Effects of Between-Imputation Iterations Masayoshi Takahashi IR Office, Tokyo University of Foreign Studies, Tokyo, JP [email protected] Incomplete data are ubiquitous in social sciences; as a consequence, available data are inefficient (ineffective) and often biased. In the literature, multiple imputation is known to be the standard method to handle missing data. While the theory of multiple imputation has been known for decades, the implementation is difficult due to the complicated nature of random draws from the posterior distribution. Thus, there are several computational algorithms in software: Data Augmentation (DA), Fully Conditional Specification (FCS), and Expectation-Maximization with Bootstrapping (EMB). Although the literature is full of comparisons between joint modeling (DA, EMB) and conditional modeling (FCS), little is known about the relative superiority between the MCMC algorithms (DA, FCS) and the non-MCMC algorithm (EMB), where MCMC stands for Markov chain Monte Carlo. Based on simulation experiments, the current study contends that EMB is a confidence proper (confidence-supporting) multiple imputation algorithm without between-imputation iterations; thus, EMB is more user-friendly than DA and FCS. Keywords: MCMC; Markov chain Monte Carlo; Incomplete data; Nonresponse; Joint modeling; Conditional modeling 1 Introduction Generally, it is quite difficult to obtain complete data in social surveys (King et al.
    [Show full text]
  • The Effects of Missing Data
    1.2 REPLACING MISSING DATA FOR ENSEMBLE SYSTEMS Tyler McCandless*, Sue Ellen Haupt, George Young 1 The Pennsylvania State University A major problem for statistical predictive system 1. INTRODUCTION developers is obtaining enough input data from Numerical Weather Prediction (NWP) models for Missing data presents a problem in many fields, developing, or training, new post-processing methods. including meteorology. The data can be missing at Such post-processing, or calibrating, of NWP forecasts random, in recurring patterns, or in large sections. has been shown to decrease errors in forecasting since Incomplete datasets can lead to misleading conclusions, the introduction of Model Output Statistics (MOS) as demonstrated by Kidson and Trenberth (1988), who (Glahn and Lowry 1972). For these statistical post- assessed the impact of missing data on general processing techniques to make these improvements in circulation statistics by systematically decreasing the forecast skill, however, requires training them on amount of available training data. They determined that archived forecasts and validation data. Enough data the ratio of the Root Mean Square Error (RMSE) in the must be available for the resulting technique to be monthly mean to the daily standard deviation was two to stable. Thus, imputing any missing data will provide three times higher when the missing data was spaced larger training and validation datasets for this process. randomly compared to spaced equally, and RMSE The advent of ensembles of forecasts has led to increased by up to a factor of two when the missing data new methods of post-processing. Post-processing occurred in one block. Therefore, the spacing of the ensemble temperature data can produce an even more missing data can have an impact on statistical analyses.
    [Show full text]
  • Resampling Variance Estimation in Surveys with Missing Data
    Resampling Variance Estimation in Surveys with Missing Data A. C. Davison and S. Sardy∗ February 8, 2007 Abstract We discuss variance estimation by resampling in surveys in which data are missing. We derive a formula for linearization in the case of calibrated estimation with de- terministic regression imputation, and compare the resulting variance estimates with balanced repeated replication with and without grouping, the bootstrap, the block jackknife, and multiple imputation, for simulated data based on the Swiss Household Budget Survey. We also investigate the number of replications needed for reliable vari- ance estimation under resampling in this context. Linearization, the bootstrap, and multiple imputation perform best in terms of relative bias and mean square error. Some key words: Balanced repeated replication; Bootstrap; Calibration; Influence function; Jackknife; Linearization; Missing data; Multiple imputation. ∗Anthony Davison is Professor of Statistics, Institute of Mathematics, School of Basic Sciences, Ecole Polytechnique F´ed´erale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland (http://stat.epfl.ch). Sylvain Sardy is Maˆıtre d’Enseignement et de Recherche, Section de Math´ematiques, Universit´ede Gen`eve, 24, rue du Li`evre, Case postale 64, 1211 Gen`eve 4, Switzerland. This work was largely performed in the context of the European Union project DACSEIS (http://www.dacseis.ch). We thank the other members of the DACSEIS team for their valuable collaboration, Professor J. N. K. Rao for comments leading to the inclusion of §5.2, and referees for helpful remarks on an earlier version of the paper. 1 1 Introduction Classical variance formulae for sample survey estimators are derived using approxima- tions based on Taylor series expansion of the estimators.
    [Show full text]
  • Missing Data
    university of copenhagen department of biostatistics university of copenhagen department of biostatistics Faculty of Health Sciences Contents ◮ Planning statistical analyses with missing data. ◮ Missing data Missing data types. ◮ Bias due to missing data or improper handling of these. Analysis of repeated measurements 2017 ◮ Analyzing data with missing values using multiple imputations, likelihood inference, or inverse probability weighting. Julie Lyng Forman & Lene Theil Skovgaard ◮ Analysis of longitudinal studies with death or other Department of Biostatistics, University of Copenhagen intercurrent events. Suggested reading FLW (2011) chapters 18 +19, lecture notes. 2 / 60 university of copenhagen department of biostatistics university of copenhagen department of biostatistics Outline What is missing data? What to worry about when you have missing data Most investigations are planned to be balanced but almost inevitably turn out to have intermittent missing values , or Missing data types patients who drop-out for some reason . Simple methods for handling missing data ◮ Just by coincidence (sample lost or ruined). Advanced methods for handling missing data ◮ The patient moved away (may be worrysome). ◮ The patient has recovered (worrying, i.e. carrying Missing data in population average models (binary data) information). Death and other intercurrent events in longitudinal studies ◮ The patient is too ill to show up (very serious, i.e. carrying unretrievable information). Evaluation 3 / 60 4 / 60 university of copenhagen department of biostatistics university of copenhagen department of biostatistics Missing data is trouble Planning statistical analyses with missing data Missing data should be addressed already in the planning stage. ◮ It complicates statistical analysis. 1. What are the outcomes and explanatory variables? ◮ It may bias statistical results beyond repair.
    [Show full text]
  • Comparison of Missing Data Infilling Mechanisms for Recovering a Real-World Single Station Streamflow Observation
    International Journal of Environmental Research and Public Health Article Comparison of Missing Data Infilling Mechanisms for Recovering a Real-World Single Station Streamflow Observation Thelma Dede Baddoo 1,2,*, Zhijia Li 2, Samuel Nii Odai 3, Kenneth Rodolphe Chabi Boni 4, Isaac Kwesi Nooni 1,5,6 and Samuel Ato Andam-Akorful 7 1 Binjiang College, Nanjing University of Information Science & Technology, No.333 Xishan Road, Wuxi 214105, China; [email protected] 2 College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; [email protected] 3 Office of the Vice Chancellor, Accra Technical University, Accra GA000, Ghana; [email protected] 4 College of Computer and Information Engineering, Hohai University, Nanjing 211100, China; [email protected] 5 Wuxi Institute of Technology, Nanjing University of Information Science & Technology, Wuxi 214105, China 6 School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China 7 Department of Geomatic Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK000, Ghana; [email protected] * Correspondence: [email protected] Abstract: Reconstructing missing streamflow data can be challenging when additional data are not available, and missing data imputation of real-world datasets to investigate how to ascertain the accuracy of imputation algorithms for these datasets are lacking. This study investigated the necessary complexity of missing data reconstruction schemes to obtain the relevant results for a Citation: Baddoo, T.D.; Li, Z.; Odai, real-world single station streamflow observation to facilitate its further use. This investigation was S.N.; Boni, K.R.C.; Nooni, I.K.; implemented by applying different missing data mechanisms spanning from univariate algorithms to Andam-Akorful, S.A.
    [Show full text]
  • A Monte Carlo Study: the Impact of Missing Data in Cross- Classification Random Ffe Ects Models
    Georgia State University ScholarWorks @ Georgia State University Educational Policy Studies Dissertations Department of Educational Policy Studies 8-12-2009 A Monte Carlo Study: The Impact of Missing Data in Cross- Classification Random ffE ects Models Meltem Alemdar Follow this and additional works at: https://scholarworks.gsu.edu/eps_diss Part of the Education Commons, and the Education Policy Commons Recommended Citation Alemdar, Meltem, "A Monte Carlo Study: The Impact of Missing Data in Cross-Classification Random Effects Models." Dissertation, Georgia State University, 2009. https://scholarworks.gsu.edu/eps_diss/34 This Dissertation is brought to you for free and open access by the Department of Educational Policy Studies at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Educational Policy Studies Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. ACCEPTANCE This dissertation, A MONTE CARLO STUDY: THE IMPACT OF MISSING DATA IN CROSS-CLASSIFICATION RANDOM EFFECTS MODELS, by MELTEM ALEMDAR, was prepared under the direction of the candidate’s Dissertation Advisory Committee. It is accepted by the committee members in partial fulfillment of the requirements for the degree Doctor of Philosophy in the College of Education, Georgia State University. The Dissertation Advisory Committee and the student’s Department Chair, as representatives of the faculty, certify that this dissertation has met all standards of excellence and scholarship as determined by the faculty. The Dean of the College of Education concurs. ______________________________ ______________________________ Carolyn F. Furlow, Ph.D. Philo A. Hutcheson, Ph.D. Committee Chair Committee Member ______________________________ ______________________________ Phillip E. Gagne, Ph.D.
    [Show full text]