bioRxiv preprint doi: https://doi.org/10.1101/602987; this version posted April 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Pigeon foot feathering reveals conserved limb identity networks Authors: Elena F. Boer1, Hannah F. Van Hollebeke1, Sungdae Park2, Carlos R. Infante3, Douglas B. Menke2, MiChael D. Shapiro1* Affiliations: 1School of BiologiCal ScienCes, University of Utah, Salt Lake City, UT 84112, USA 2Department of GenetiCs, University of Georgia, Athens, GA 30602, USA 3Department of Integrative Biology, University of Colorado, Denver, CO 80217, USA *Author for correspondenCe: MiChael D. Shapiro, School of Biological SCienCes, 257 South 1400 East, Salt Lake City, UT 84112 USA; phone: +1 801 581 5690; fax: +1 801 581 4668; email:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/602987; this version posted April 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Summary statement In feather-footed pigeons, mutant alleles of PITX1 and TBX5 drive the partial redeployment of an evolutionarily conserved forelimb genetic program in the hindlimb. Abstract The tetrapod limb is a stunning example of evolutionary diversity, with dramatiC variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species.