The Small Stellated Dodecahedron Code and rspa.royalsocietypublishing.org Friends Research J. Conrad1, C. Chamberland2, N. P. Breuckmann3, B. M. Terhal4;5 Article submitted to journal 1 JARA Institute for Quantum Information, RWTH Aachen University, Aachen 52056, Germany Subject Areas: 2 Institute for Quantum Computing and Department of quantum information Physics and Astronomy, University of Waterloo, Keywords: Waterloo, Ontario, N2L 3G1, Canada 3 quantum error correction, Department of Physics and Astronomy, University fault-tolerance, homological quantum College London, London WC1E 6BT, UK 4 codes QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands 5 Author for correspondence: Institute for Theoretical Nanoelectronics, Barbara M. Terhal Forschungszentrum Juelich, D-52425 Juelich, e-mail:
[email protected] Germany We explore a distance-3 homological CSS quantum code, namely the small stellated dodecahedron code, for dense storage of quantum information and we compare its performance with the distance-3 surface code. The data and ancilla qubits of the small stellated dodecahedron code can be located on the edges resp. vertices of a small stellated dodecahedron, making this code suitable for 3D connectivity. This code encodes 8 logical qubits into 30 physical qubits (plus 22 ancilla qubits for parity check measurements) as compared to 1 logical qubit into 9 physical qubits (plus 8 ancilla qubits) for the surface code. We develop fault- tolerant parity check circuits and a decoder for this code, allowing us to numerically assess the circuit- based pseudo-threshold. arXiv:1712.07666v2 [quant-ph] 29 Mar 2018 c The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited.