Doctoral Thesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Polysaccharide-Degrading Marine Bacterium Flammeovirga Sp. MY04 and Its Extracellular Agarase System
中国科技论文在线 http://www.paper.edu.cn J. Ocean Univ. China (Oceanic and Coastal Sea Research) DOI 10.1007/s11802-012-1929-3 ISSN 1672-5182, 2012 11 (3): 375-382 http://www.ouc.edu.cn/xbywb/ E-mail:[email protected] A Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. MY04 and Its Extracellular Agarase System HAN Wenjun1), 2), 3), GU Jingyan1), 3), YAN Qiujie2), LI Jungang2), WU Zhihong3), *, GU Qianqun1), *, and LI Yuezhong3) 1) Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R . C hi n a 2) School of Life Science and Biotechnology, Mianyang Normal University, Mianyang 621000, P. R. China 3) State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, P. R. China (Received February 2, 2012; revised April 8, 2012; accepted May 29, 2012) © Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2012 Abstract Bacteria of the genus Flammeovirga can digest complex polysaccharides (CPs), but no details have been reported re- garding the CP depolymerases of these bacteria. MY04, an agarolytic marine bacterium isolated from coastal sediments, has been identified as a new member of the genus Flammeovirga. The MY04 strain is able to utilize multiple CPs as a sole carbon source and -1 -1 grows well on agarose, mannan, or xylan. This strain produces high concentrations of extracellular proteins (490 mg L ± 18.2 mg L liquid culture) that exhibit efficient and extensive degradation activities on various polysaccharides, especially agarose. These pro- -1 -1 teins have an activity of 310 U mg ± 9.6 U mg proteins. -
Isolation and Characterization of Culturable Thermophilic Bacteria from Hot Springs in Benguet, Philippines Socorro Martha Meg-Ay V
International Journal of Philippine Science and Technology, Vol. 08, No. 2, 2015 14 ARTICLE Isolation and characterization of culturable thermophilic bacteria from hot springs in Benguet, Philippines Socorro Martha Meg-ay V. Daupan1 and Windell L. Rivera*1,2 1Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, 1101, Philippines 2Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, 1101, Philippines Abstract—Despite the numerous geothermal environments in the Philippines, there is limited information on the composition of thermophilic bacteria within the country. This study is the first to carry out both culture and molecular-based methods to characterize thermophilic bacteria from hot springs in the province of Benguet in the Philippines. The xylan-degrading ability of each isolate was also investigated using the Congo red method. A total of 14 phenotypically-different isolates (7 from Badekbek mud spring and 7 from Dalupirip hot spring) were characterized. Phylogenetic analysis based on the nearly complete 16S rDNA sequences revealed that all the isolates obtained from Badekbek were affiliated with Geobacillus, whereas the isolates from Dalupirip clustered into 3 major linkages of bacterial phyla, Firmicutes (72%) consisting of the genera Geobacillus and Anoxybacillus; Deinococcus-Thermus (14%) consisting of the genus Meiothermus; and Bacteroidetes consisting of the genus Thermonema (14%). In addition, xylan-degrading ability was observed in all isolates from Badekbek and in 2 isolates from Dalupirip which showed high sequence similarity with Geobacillus spp. The results are also essential in understanding the roles of the physico-chemical properties of hot spring water as a driver of thermophilic bacterial compositions. -
Deciphering a Marine Bone Degrading Microbiome Reveals a Complex Community Effort
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093005; this version posted November 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Deciphering a marine bone degrading microbiome reveals a complex community effort 2 3 Erik Borcherta,#, Antonio García-Moyanob, Sergio Sanchez-Carrilloc, Thomas G. Dahlgrenb,d, 4 Beate M. Slabya, Gro Elin Kjæreng Bjergab, Manuel Ferrerc, Sören Franzenburge and Ute 5 Hentschela,f 6 7 aGEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Research Unit Marine Symbioses, 8 Kiel, Germany 9 bNORCE Norwegian Research Centre, Bergen, Norway 10 cCSIC, Institute of Catalysis, Madrid, Spain 11 dDepartment of Marine Sciences, University of Gothenburg, Gothenburg, Sweden 12 eIKMB, Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany 13 fChristian-Albrechts University of Kiel, Kiel, Germany 14 15 Running Head: Marine bone degrading microbiome 16 #Address correspondence to Erik Borchert, [email protected] 17 Abstract word count: 229 18 Text word count: 4908 (excluding Abstract, Importance, Materials and Methods) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.093005; this version posted November 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The marine bone biome is a complex assemblage of macro- and microorganisms, however the 21 enzymatic repertoire to access bone-derived nutrients remains unknown. -
{Replace with the Title of Your Dissertation}
The Mechanism of Foaming in Deep-Pit Swine Manure Storage A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY Mi Yan IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Adviser: Bo Hu October, 2016 © Mi Yan 2016 i Acknowledgements There are many people that contribute to this PhD thesis with their work, advice or encouragement. First of all, I would like to thank my advisor Dr. Bo Hu, who gave me the opportunity and long term support to write this dissertation. He gave me the freedom to work on my idea and plans, and gave great suggestions when I need support. There are many difficult time during this research, but there is always great support provided from him, from technical discussion to mental encouragement. I am also grateful to my committee members Dr. Larry Jacobson, Dr. Steve Severtson and Dr. Gerald Shurson. They took time from their tight schedule to make critical remarks and helpful suggestions, as well as their confidence on me and my work. Thanks are also dedicated to several experts, particularly to Dr. Chuck Clanton and David Schmidt for their valuable inputs and inspiring discussions. Besides valuable discussions, Dr. Brian Hetchler and Dr. Neslihan Akdeniz provide a great amount of valuable samples for experiments. I am also grateful to Dr. Michael Sadowsky that provided great help in microbial sequencing analysis, to Dr. LeeAnn Higgins and Dr. Susan Viper that provided great help in proteomic analysis. My colleagues at Bioproducts and Biosystems Engineering played an important role towards the successful completion of this dissertation. -
Eelgrass Sediment Microbiome As a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan
Microbes Environ. Vol. 34, No. 1, 13-22, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18103 Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan TATSUNORI NAKAGAWA1*, YUKI TSUCHIYA1, SHINGO UEDA1, MANABU FUKUI2, and REIJI TAKAHASHI1 1College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252–0880, Japan; and 2Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060–0819, Japan (Received July 16, 2018—Accepted October 22, 2018—Published online December 1, 2018) Nitrous oxide (N2O) is a powerful greenhouse gas; however, limited information is currently available on the microbiomes involved in its sink and source in seagrass meadow sediments. Using laboratory incubations, a quantitative PCR (qPCR) analysis of N2O reductase (nosZ) and ammonia monooxygenase subunit A (amoA) genes, and a metagenome analysis based on the nosZ gene, we investigated the abundance of N2O-reducing microorganisms and ammonia-oxidizing prokaryotes as well as the community compositions of N2O-reducing microorganisms in in situ and cultivated sediments in the non-eelgrass and eelgrass zones of Lake Akkeshi, Japan. Laboratory incubations showed that N2O was reduced by eelgrass sediments and emitted by non-eelgrass sediments. qPCR analyses revealed that the abundance of nosZ gene clade II in both sediments before and after the incubation as higher in the eelgrass zone than in the non-eelgrass zone. In contrast, the abundance of ammonia-oxidizing archaeal amoA genes increased after incubations in the non-eelgrass zone only. Metagenome analyses of nosZ genes revealed that the lineages Dechloromonas-Magnetospirillum-Thiocapsa and Bacteroidetes (Flavobacteriia) within nosZ gene clade II were the main populations in the N2O-reducing microbiome in the in situ sediments of eelgrass zones. -
The Sunlit Microoxic Niche of the Archaeal Eukaryotic Ancestor Comes 2 to Light
bioRxiv preprint doi: https://doi.org/10.1101/385732; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The sunlit microoxic niche of the archaeal eukaryotic ancestor comes 2 to light 3 4 Paul-Adrian Bulzu1#, Adrian-Ştefan Andrei2#, Michaela M. Salcher3, Maliheh Mehrshad2, 5 Keiichi Inoue5, Hideki Kandori6, Oded Beja4, Rohit Ghai2*, Horia L. Banciu1,7 6 1Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai 7 University, Cluj-Napoca, Romania 8 2Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Academy 9 of Sciences of the Czech Republic, České Budějovice, Czech Republic. 10 3Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 11 CH-8802 Kilchberg, Switzerland. 12 4Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel. 13 5The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan 14 6Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan. 15 7Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş- 16 Bolyai University, Cluj-Napoca, Romania 17 18 19 20 21 # These authors contributed equally to this work 22 *Corresponding author: Rohit Ghai 23 Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Academy 24 of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic. -
Approcci Colturali
UNIVERSITÀ DEGLI STUDI DELLA TUSCIA DI VITERBO DIPARTIMENTO DI SCIENZE ECOLOGICHE E BIOLOGICHE (DEB) CORSO DI DOTTORATO DI RICERCA IN ECOLOGIA E GESTIONE DELLE RISORSE BIOLOGICHE XXVII CICLO Studio della diversità batterica delle Saline di Tarquinia: approcci colturali e coltura-indipendenti Settore scientifico-disciplinare: BIO/19 Coordinatore: Prof. DANIELE CANESTRELLI Tutor: Prof. MASSIMILIANO FENICE Dottorando: ARIANNA AQUILANTI INDICE 1. INTRODUZIONE………………………………………………………………...1 1.1 GLI AMBIENTI MARINI DI TRANSIZIONE........................................................................1 1.1.1 Caratteristiche chimico-fisiche....................................................................................................2 1.1.2 Caratteristiche ecologiche e biologiche………….……………………………………………..4 1.2 LE SALINE MARINE………………………………………………………………………...6 1.3 I MICRORGANISMI DEGLI AMBIENTI IPERALINI…………………………………...9 1.3.1 Gli eucarioti…………………………………………………………………………………10 1.3.2 I procarioti…………………………………………………………………………………..11 1.3.3 Adattamenti agli ambienti iperalini…………………………………………………………14 1.3.3.1 Strategie osmoregolative e morfostrutturali………………………………………………………14 1.3.3.2 Diversità metabolica dei microrganismi alofili…………………………………………………..18 1.4 TECNICHE DI INDAGINE DELLA DIVERSITÁ MICROBICA……………………….21 1.4.1 Metodi colturali……………………………………………………………………………..21 1.4.2 Metodi coltura-indipendenti………………………………………………………………...25 1.4.2.1 Le tecniche di fingerprinting………………………………………………………………………..25 1.4.2.2 Elettroforesi su gel a gradiente denaturante (DGGE -
Targeted Manipulation of Abundant and Rare Taxa in the Daphnia Magna Microbiota With
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286427; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Targeted manipulation of abundant and rare taxa in the Daphnia magna microbiota with 2 antibiotics impacts host fitness differentially 3 4 Running title: Targeted microbiota manipulation impacts fitness 5 6 Reilly O. Coopera#, Janna M. Vavraa, Clayton E. Cresslera 7 1: School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 8 9 Corresponding Author Information: 10 Reilly O. Cooper 11 [email protected] 12 13 14 Competing Interests: The authors have no competing interests to declare. 15 16 17 18 19 20 21 22 23 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286427; this version posted September 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 Abstract 25 Host-associated microbes contribute to host fitness, but it is unclear whether these contributions 26 are from rare keystone taxa, numerically abundant taxa, or interactions among community 27 members. Experimental perturbation of the microbiota can highlight functionally important taxa; 28 however, this approach is primarily applied in systems with complex communities where the 29 perturbation affects hundreds of taxa, making it difficult to pinpoint contributions of key 30 community members. Here, we use the ecological model organism Daphnia magna to examine 31 the importance of rare and abundant taxa by perturbing its relatively simple microbiota with 32 targeted antibiotics. -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
Which Organisms Are Used for Anti-Biofouling Studies
Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E. -
Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in Three Historical Buildings with Mural Paintings
Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in Three Historical Buildings with Mural Paintings Jo¨ rg D. Ettenauer1*, Valme Jurado2, Guadalupe Pin˜ ar1, Ana Z. Miller2,3, Markus Santner4, Cesareo Saiz-Jimenez2, Katja Sterflinger1 1 VIBT-BOKU, University of Natural Resources and Life Sciences, Department of Biotechnology, Vienna, Austria, 2 Instituto de Recursos Naturales y Agrobiologia, IRNAS- CSIC, Sevilla, Spain, 3 CEPGIST/CERENA, Instituto Superior Te´cnico, Universidade de Lisboa, Lisboa, Portugal, 4 Bundesdenkmalamt, Abteilung fu¨r Konservierung und Restaurierung, Vienna, Austria Abstract A number of mural paintings and building materials from monuments located in central and south Europe are characterized by the presence of an intriguing rosy discolouration phenomenon. Although some similarities were observed among the bacterial and archaeal microbiota detected in these monuments, their origin and nature is still unknown. In order to get a complete overview of this biodeterioration process, we investigated the microbial communities in saline environments causing the rosy discolouration of mural paintings in three Austrian historical buildings using a combination of culture- dependent and -independent techniques as well as microscopic techniques. The bacterial communities were dominated by halophilic members of Actinobacteria, mainly of the genus Rubrobacter. Representatives of the Archaea were also detected with the predominating genera Halobacterium, Halococcus and Halalkalicoccus. Furthermore, halophilic bacterial strains, mainly of the phylum Firmicutes, could be retrieved from two monuments using special culture media. Inoculation of building materials (limestone and gypsum plaster) with selected isolates reproduced the unaesthetic rosy effect and biodeterioration in the laboratory. Citation: Ettenauer JD, Jurado V, Pin˜ar G, Miller AZ, Santner M, et al. -
The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities.