Part B 2.1. Ammonia Synthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zn-Al Mixed Oxides Decorated with Potassium As Catalysts for HT-WGS: Preparation and Properties
catalysts Article Zn-Al Mixed Oxides Decorated with Potassium as Catalysts for HT-WGS: Preparation and Properties Katarzyna Antoniak-Jurak * , Paweł Kowalik, Kamila Michalska, Wiesław Próchniak and Robert Bicki Łukasiewicz Research Network—New Chemical Syntheses Institute, Al. Tysi ˛acleciaPa´nstwa Polskiego 13A, 24-110 Puławy, Poland; [email protected] (P.K.); [email protected] (K.M.); [email protected] (W.P.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +48-8-1473-1754 Received: 8 September 2020; Accepted: 18 September 2020; Published: 21 September 2020 Abstract: A set of ex-ZnAl-LDHs catalysts with a molar ratio of Zn/Al in the range of 0.3–1.0 was prepared using co-precipitation and thermal treatment. The samples were characterized using various methods, including X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy FT-IR, N2 adsorption, Temperature-programmed desorption of CO2 (TPD-CO2) as well as Scanning electron microscopy (SEM-EDS). Catalyst activity and long-term stability measurements were carried out in a high-temperature water–gas shift (HT-WGS) reaction. Mixed oxide catalysts with various Zn/Al molar ratios decorated with potassium showed high activity in the HT-WGS reaction within the temperature range of 330–400 ◦C. The highest activity was found for the Zn/Al molar ratio of 0.5 corresponding to spinel stoichiometry. However, the catalyst with a stoichiometric spinel molar ratio of Zn/Al (ZnAl_0.5_K) revealed a higher tendency for surface migration and/or vaporization of potassium during overheating at 450 ◦C. -
Chapter 12 Lecture Notes
Chemical Kinetics “The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products” Chapter 13: Chemical Kinetics: Rates of Reactions © 2008 Brooks/Cole 1 © 2008 Brooks/Cole 2 Reaction Rate Reaction Rate Combustion of Fe(s) powder: © 2008 Brooks/Cole 3 © 2008 Brooks/Cole 4 Reaction Rate Reaction Rate + Change in [reactant] or [product] per unit time. Average rate of the Cv reaction can be calculated: Time, t [Cv+] Average rate + Cresol violet (Cv ; a dye) decomposes in NaOH(aq): (s) (mol / L) (mol L-1 s-1) 0.0 5.000 x 10-5 13.2 x 10-7 10.0 3.680 x 10-5 9.70 x 10-7 20.0 2.710 x 10-5 7.20 x 10-7 30.0 1.990 x 10-5 5.30 x 10-7 40.0 1.460 x 10-5 3.82 x 10-7 + - 50.0 1.078 x 10-5 Cv (aq) + OH (aq) → CvOH(aq) 2.85 x 10-7 60.0 0.793 x 10-5 -7 + + -5 1.82 x 10 change in concentration of Cv Δ [Cv ] 80.0 0.429 x 10 rate = = 0.99 x 10-7 elapsed time Δt 100.0 0.232 x 10-5 © 2008 Brooks/Cole 5 © 2008 Brooks/Cole 6 1 Reaction Rates and Stoichiometry Reaction Rates and Stoichiometry Cv+(aq) + OH-(aq) → CvOH(aq) For any general reaction: a A + b B c C + d D Stoichiometry: The overall rate of reaction is: Loss of 1 Cv+ → Gain of 1 CvOH Rate of Cv+ loss = Rate of CvOH gain 1 Δ[A] 1 Δ[B] 1 Δ[C] 1 Δ[D] Rate = − = − = + = + Another example: a Δt b Δt c Δt d Δt 2 N2O5(g) 4 NO2(g) + O2(g) Reactants decrease with time. -
Opportunities for Catalysis in the 21St Century
Opportunities for Catalysis in The 21st Century A Report from the Basic Energy Sciences Advisory Committee BASIC ENERGY SCIENCES ADVISORY COMMITTEE SUBPANEL WORKSHOP REPORT Opportunities for Catalysis in the 21st Century May 14-16, 2002 Workshop Chair Professor J. M. White University of Texas Writing Group Chair Professor John Bercaw California Institute of Technology This page is intentionally left blank. Contents Executive Summary........................................................................................... v A Grand Challenge....................................................................................................... v The Present Opportunity .............................................................................................. v The Importance of Catalysis Science to DOE.............................................................. vi A Recommendation for Increased Federal Investment in Catalysis Research............. vi I. Introduction................................................................................................ 1 A. Background, Structure, and Organization of the Workshop .................................. 1 B. Recent Advances in Experimental and Theoretical Methods ................................ 1 C. The Grand Challenge ............................................................................................. 2 D. Enabling Approaches for Progress in Catalysis ..................................................... 3 E. Consensus Observations and Recommendations.................................................. -
Andrea Deoudes, Kinetics: a Clock Reaction
A Kinetics Experiment The Rate of a Chemical Reaction: A Clock Reaction Andrea Deoudes February 2, 2010 Introduction: The rates of chemical reactions and the ability to control those rates are crucial aspects of life. Chemical kinetics is the study of the rates at which chemical reactions occur, the factors that affect the speed of reactions, and the mechanisms by which reactions proceed. The reaction rate depends on the reactants, the concentrations of the reactants, the temperature at which the reaction takes place, and any catalysts or inhibitors that affect the reaction. If a chemical reaction has a fast rate, a large portion of the molecules react to form products in a given time period. If a chemical reaction has a slow rate, a small portion of molecules react to form products in a given time period. This experiment studied the kinetics of a reaction between an iodide ion (I-1) and a -2 -1 -2 -2 peroxydisulfate ion (S2O8 ) in the first reaction: 2I + S2O8 I2 + 2SO4 . This is a relatively slow reaction. The reaction rate is dependent on the concentrations of the reactants, following -1 m -2 n the rate law: Rate = k[I ] [S2O8 ] . In order to study the kinetics of this reaction, or any reaction, there must be an experimental way to measure the concentration of at least one of the reactants or products as a function of time. -2 -2 -1 This was done in this experiment using a second reaction, 2S2O3 + I2 S4O6 + 2I , which occurred simultaneously with the reaction under investigation. Adding starch to the mixture -2 allowed the S2O3 of the second reaction to act as a built in “clock;” the mixture turned blue -2 -2 when all of the S2O3 had been consumed. -
Surface Reactions and Chemical Bonding in Heterogeneous Catalysis
Surface reactions and chemical bonding in heterogeneous catalysis Henrik Öberg Doctoral Thesis in Chemical Physics at Stockholm University 2014 Thesis for the Degree of Doctor of Philosophy in Chemical Physics Department of Physics Stockholm University Stockholm 2014 c Henrik Oberg¨ ISBN 978-91-7447-893-8 Abstract This thesis summarizes studies which focus on addressing, using both theoretical and experimental methods, fundamental questions about surface phenomena, such as chemical reactions and bonding, related to processes in heterogeneous catalysis. The main focus is on the theoretical approach and this aspect of the results. The included articles are collected into three categories of which the first contains detailed studies of model systems in heterogeneous catalysis. For example, the trimerization of acetylene adsorbed on Cu(110) is measured using vibrational spectroscopy and modeled within the framework of Density Functional Theory (DFT) and quantitative agreement of the reaction barriers is obtained. In the second category, aspects of fuel cell catalysis are discussed. O2 dissociation is rate-limiting for the reduction of oxygen (ORR) under certain conditions and we find that adsorbate-adsorbate interactions are decisive when modeling this reaction step. Oxidation of Pt(111) (Pt is the electrocatalyst), which may alter the overall activity of the catalyst, is found to start via a PtO-like surface oxide while formation of a-PtO2 trilayers precedes bulk oxidation. When considering alternative catalyst materials for the ORR, their stability needs to be investigated in detail under realistic conditions. The Pt/Cu(111) skin alloy offers a promising candidate but segregation of Cu atoms to the surface is induced by O adsorption. -
'New Insights on the Selective Oxidation of Methanol to Formaldehyde on Femo Based Catalysts'
‘New Insights on the Selective Oxidation of Methanol to Formaldehyde on FeMo Based Catalysts' Catherine Brookes School of Chemistry Cardiff University Thesis for the degree of Doctor of Philosophy i This thesis was submitted for examination in August 2015. ii Abstract The selective oxidation of methanol has been studied in detail, with particular focus on gaining insights into the surface active sights responsible for directing the selectivity to formaldehyde. Various Fe and Mo containing oxides have been investigated for their reactivity with methanol, to gain an understanding of the different roles of these components in the industrial catalyst employed, which is a mixed phase comprised of MoO 3 and Fe 2(MoO 4)3. Catalysts have primarily been tested through using TPD (temperature programmed desorption) and TPPFR (temperature programmed pulsed flow reaction). The reactivity of Fe 2O3 is dominated by combustion products, with CO 2 and H 2 produced via a formate intermediate adsorbing at the catalyst surface. For MoO 3 however, the surface is populated by methoxy intermediates, so that the selectivity is almost 100 % directed to formaldehyde. When a mixture of isolated Fe and Mo sites co-exist, the surface methoxy becomes stabilised, resulting in a dehydrogenation reaction to CO and H 2. CO and CO 2 can also be observed on Mo rich surfaces, however here a consequence of the further oxidation of formaldehyde, through a linear pathway. TPD and DRIFTS identify these intermediates and products forming. Since the structure of the industrial catalyst is relatively complex, in that it contains both MoO 3 and Fe 2(MoO 4)3, it is difficult to identify the active site for the reaction with methanol. -
Surface Models in Heterogeneous Catalysis the Synthesis of Ammonia and the Conversion of Carbon Monoxide
JOURNAL OF CATALYSIS 8, 29-35 (1967) Surface Models in Heterogeneous Catalysis The Synthesis of Ammonia and the Conversion of Carbon Monoxide G. PARRAVANO From the Deparzment qf Chemical and Metallurgical Engineering, University qf Michigan Ann Arbor, Machigan Received November 16, 1966, revised January 16, 1967 The establishment of chemical equilibria between gas and solid catalysts during the synthesis of NH3 and the conversion of CO is considered. Suitable solid-gas equilibrium reactions are discussed. With the correct choice of the rate-controlling step, the equilib- rium surface models are able to reproduce the experimental expressions for the rates of reaction. These models represent a drastic departure from the concept of a fixed, hetero- geneous surface that has been extensively used in the past for the interpretation of the experimental results on the above reactions. The two approaches, however, complement each other and the validity of each one may well be justified under different experimental conditions. Thus, a model may be considered the extension of the other by modification of some of the parameters of the system. Over the past several years many investi- view and it is certainly invalid for relatively gations have been carried out on the catalytic long periods of catalyst operation. It is, synthesis of NH3 and on the conversion of therefore, of interest to consider other CO. The studies have generally been directed possibilities more physically justifiable. toward the understanding of the nature, In this direction it seems particularly properties, and operation of the catalytic important to consider the possibility that surface through the analysis of experimental equilibration reactions between surface and results of reaction rates. -
Direct Synthesis of Dimethyl Ether from Syngas on Bifunctional Hybrid
catalysts Article Direct Synthesis of Dimethyl Ether from Syngas on Bifunctional Hybrid Catalysts Based on Supported H3PW12O40 and Cu-ZnO(Al): Effect of Heteropolyacid Loading on Hybrid Structure and Catalytic Activity Elena Millán , Noelia Mota, Rut Guil-López, Bárbara Pawelec , José L. García Fierro and Rufino M. Navarro * Instituto de Catálisis y Petroleoquímica (CSIC), C/Marie Curie 2, Cantoblanco, 28049 Madrid, Spain; [email protected] (E.M.); [email protected] (N.M.); [email protected] (R.G.-L.); [email protected] (B.P.); jlgfi[email protected] (J.L.G.F.) * Correspondence: [email protected] Received: 27 August 2020; Accepted: 15 September 2020; Published: 17 September 2020 Abstract: The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. We studied the effect of the HPW loading on TiO2 (from 1.4 to 2.7 monolayers) on the dispersion and acid characteristics of the HPW clusters. When the concentration of the heteropoliacid is slightly higher than the monolayer (1.4 monolayers) the acidity of the clusters is perturbed by the surface of titania, while for concentration higher than 1.7 monolayers results in the formation of three-dimensional HPW nanocrystals with acidity similar to the bulk heteropolyacid. Physical hybridization of supported heteropolyacids with the Cu-ZnO(Al) catalyst modifies both the acid characteristics of the supported heteropolyacids and the copper surface area of the Cu-ZnO(Al) catalyst. -
Reaction Kinetics in Organic Reactions
Autumn 2004 Reaction Kinetics in Organic Reactions Why are kinetic analyses important? • Consider two classic examples in asymmetric catalysis: geraniol epoxidation 5-10% Ti(O-i-C3H7)4 O DET OH * * OH + TBHP CH2Cl2 3A mol sieve OH COOH5C2 L-(+)-DET = OH COOH5C2 * OH geraniol hydrogenation OH 0.1% Ru(II)-BINAP + H2 CH3OH P(C6H5)2 (S)-BINAP = P(C6 H5)2 • In both cases, high enantioselectivities may be achieved. However, there are fundamental differences between these two reactions which kinetics can inform us about. 1 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions geraniol epoxidation: • enantioselectivity is controlled primarily by the preferred mode of initial binding of the prochiral substrate and, therefore, the relative stability of intermediate species. The transition state resembles the intermediate species. Finn and Sharpless in Asymmetric Synthesis, Morrison, J.D., ed., Academic Press: New York, 1986, v. 5, p. 247. geraniol hydrogenation: • enantioselectivity may be dictated by the relative reactivity rather than the stability of the intermediate species. The transition state may not resemble the intermediate species. for example, hydrogenation of enamides using Rh+(dipamp) studied by Landis and Halpern (JACS, 1987, 109,1746) 2 Autumn 2004 Kinetics of Asymmetric Catalytic Reactions “Asymmetric catalysis is four-dimensional chemistry. Simple stereochemical scrutiny of the substrate or reagent is not enough. The high efficiency that these reactions provide can only be achieved through a combination of both an ideal three-dimensional structure (x,y,z) and suitable kinetics (t).” R. Noyori, Asymmetric Catalysis in Organic Synthesis,Wiley-Interscience: New York, 1994, p.3. “Studying the photograph of a racehorse cannot tell you how fast it can run.” J. -
Platinum Metals Industrial Catalysts Catalysis of Organic Reactions EDITED by M
Platinum Metals Industrial Catalysts Catalysis of Organic Reactions EDITED BY M. G. SCAROS AND M. L. PRUNIER, Marcel Dekker, New York, 1995, 599 pages, ISBN 0-8247-9364-1, U.S. $195.00 This book comprises a set of papers presented reactant purity, agitation and poisons are at the 15th Conference on Catalysis of Organic considered. This is followed by a paper detail- Reactions, held in Phoenix, Arizona, in May ing noble metal recovery operations and the var- 1994. It covers a variety of topics, such as het- ious steps involved in the noble metal “loop”. erogeneous catalysis, asymmetric hydrogena- Heterogeneous catalysis in organic synthesis tion, hydrogenation, oxidation, hydroformyla- is discussed by R. L. Augustine and colleagues tion, catalyst design and catalyst characterisation. from Seton Hall University, New Jersey. This One topic which is emphasised is hydrogena- is illustrated by the platinum catalysed oxida- tion (alpha to omega), and this is intended to tion of alcohols, carbon-carbon bond forming allow a better understanding of the entire reactions of supported palladium catalysts for process, from choosing a catalyst to the noble the Heck type arylation of allylic groups, and metal “loop”. There are over 60 papers and 186 by enantioselective heterogeneous catalysis, contributors, with a healthy number of these which includes the hydrogenation of a-ketoesters being from industry. A large proportion of the to chiral a-hydroxyesters using chinchona alka- papers deal with reactions involving platinum loid modified platinum catalysts. group metal catalysts, reflecting their impor- A detailed study of the homogeneously pal- tance to both academia and industry. -
5.3 Controlling Chemical Reactions Vocabulary: Activation Energy
5.3 Controlling Chemical Reactions Vocabulary: Activation energy – Concentration – Catalyst – Enzyme – Inhibitor - How do reactions get started? Chemical reactions won’t begin until the reactants have enough energy. The energy is used to break the chemical bonds of the reactants. Then the atoms form the new bonds of the products. Activation Energy is the minimum amount of energy needed to start a chemical reaction. All chemical reactions need a certain amount of activation energy to get started. Usually, once a few molecules react, the rest will quickly follow. The first few reactions provide the activation energy for more molecules to react. Hydrogen and oxygen can react to form water. However, if you just mix the two gases together, nothing happens. For the reaction to start, activation energy must be added. An electric spark or adding heat can provide that energy. A few of the hydrogen and oxygen molecules will react, producing energy for even more molecules to react. Graphing Changes in Energy Every chemical reaction needs activation energy to start. Whether or not a reaction still needs more energy from the environment to keep going depends on whether it is exothermic or endothermic. The peaks on the graphs show the activation energy. Notice that at the end of the exothermic reaction, the products have less energy than the reactants. This type of reaction results in a release of energy. The burning of fuels, such as wood, natural gas, or oil, is an example of an exothermic reaction. Endothermic reactions also need activation energy to get started. In addition, they need energy to continue. -
(A) Reaction Rates (I) Following the Course of a Reaction Reactions Can Be Followed by Measuring Changes in Concentration, Mass and Volume of Reactants Or Products
(a) Reaction rates (i) Following the course of a reaction Reactions can be followed by measuring changes in concentration, mass and volume of reactants or products. g Measuring a change in mass Measuring a change in volume Volume of gas produced of gas Volume Mass of beaker and contents of beaker Mass Time Time The rate is highest at the start of the reaction because the concentration of reactants is highest at this point. The steepness (gradient) of the plotted line indicates the rate of the reaction. We can also measure changes in product concentration using a pH meter for reactions involving acids or alkalis, or by taking small samples and analysing them by titration or spectrophotometry. Concentration reactant Time Calculating the average rate The average rate of a reaction, or stage in a reaction, can be calculated from initial and final quantities and the time interval. change in measured factor Average rate = change in time Units of rate The unit of rate is simply the unit in which the quantity of substance is measured divided by the unit of time used. Using the accepted notation, ‘divided by’ is represented by unit-1. For example, a change in volume measured in cm3 over a time measured in minutes would give a rate with the units cm3min-1. 0.05-0.00 Rate = 50-0 1 - 0.05 = 50 = 0.001moll-1s-1 Concentration moll Concentration 0.075-0.05 Rate = 100-50 0.025 = 50 = 0.0005moll-1s-1 The rate of a reaction, or stage in a reaction, is proportional to the reciprocal of the time taken.