Received: 16 May 2018 | Revised: 26 October 2018 | Accepted: 30 October 2018 DOI: 10.1111/1755-0998.12962 RESOURCE ARTICLE Advancing mite phylogenomics: Designing ultraconserved elements for Acari phylogeny Matthew H. Van Dam1 | Michelle Trautwein1 | Greg S. Spicer2 | Lauren Esposito1 1Entomology Department, Institute for Biodiversity Science and Sustainability, Abstract California Academy of Sciences, San Mites (Acari) are one of the most diverse groups of life on Earth; yet, their evolu- Francisco, California tionary relationships are poorly understood. Also, the resolution of broader arachnid 2Department of Biology, San Francisco State University, San Francisco, California phylogeny has been hindered by an underrepresentation of mite diversity in phy- logenomic analyses. To further our understanding of Acari evolution, we design tar- Correspondence Matthew H. Van Dam, Entomology geted ultraconserved genomic elements (UCEs) probes, intended for resolving the Department, Institute for Biodiversity complex relationships between mite lineages and closely related arachnids. We then Science and Sustainability, California Academy of Sciences, San Francisco, test our Acari UCE baits in‐silico by constructing a phylogeny using 13 existing Acari California. genomes, as well as 6 additional taxa from a variety of genomic sources. Our Acari‐ Email:
[email protected] specific probe kit improves the recovery of loci within mites over an existing general Funding information arachnid UCE probe set. Our initial phylogeny recovers the major mite lineages, yet Schlinger Foundation; Doolin Foundation for Biodiversity finds mites to be non‐monophyletic overall, with Opiliones (harvestmen) and Ricin- uleidae (hooded tickspiders) rendering Parasitiformes paraphyletic. KEYWORDS Acari, Arachnida, mites, Opiliones, Parasitiformes, partitioning, phylogenomics, Ricinuleidae, ultraconserved elements 1 | INTRODUCTION Babbitt, 2002; Regier et al., 2010; Sharma et al., 2014; Shultz, 2007; Starrett et al., 2017; Wheeler & Hayashi, 1998).