Natural Language Interfaces to Relational Dbmss by Drew Hamre
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AAAI 2008 Workshop Reports
University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science 5-2009 AAAI 2008 Workshop Reports Mark Dredze University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Mark Dredze, "AAAI 2008 Workshop Reports", . May 2009. Sarabjot Singh Anand, Razvan Bunescu, Vitor Carvalho, Jan Chomicki, Vincent Conitzer, Michael T Cox, Virginia Dignum, Zachary Dodds, Mark Dredze, David Furcy, Evgeniy Gabrilovich, Mehmet H Göker, Hans Guesgen, Haym Hirsh, Dietmar Jannach, Ulrich Junker. (2009, April). AAAI 2008 Workshop Reports. AI Magazine, 30(1), 108-118. Copyright AAAI 2009. The copies do not imply AAAI endorsement of a product or a service of the employer, and that the copies are not for sale. Publisher URL: http://proquest.umi.com/ pqdlink?did=1680350011&sid=1&Fmt=2&clientId=3748&RQT=309&VName=PQD This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/904 For more information, please contact [email protected]. AAAI 2008 Workshop Reports Abstract AAAI was pleased to present the AAAI-08 Workshop Program, held Sunday and Monday, July 13-14, in Chicago, Illinois, USA. The program included the following 15 workshops: Advancements in POMDP Solvers; AI Education Workshop Colloquium; Coordination, Organizations, Institutions, and Norms in Agent Systems, Enhanced Messaging; Human Implications of Human-Robot Interaction; Intelligent Techniques for Web Personalization and Recommender Systems; Metareasoning: Thinking about Thinking; Multidisciplinary Workshop on Advances in Preference Handling; Search in Artificial Intelligence and Robotics; Spatial and Temporal Reasoning; Trading Agent Design and Analysis; Transfer Learning for Complex Tasks; What Went Wrong and Why: Lessons from AI Research and Applications; and Wikipedia and Artificial Intelligence: An vE olving Synergy. -
Objective Assessment of Cerebellar Ataxia: a Comprehensive and Refned Approach Bipasha Kashyap1 ✉ , Dung Phan1, Pubudu N
www.nature.com/scientificreports OPEN Objective Assessment of Cerebellar Ataxia: A Comprehensive and Refned Approach Bipasha Kashyap1 ✉ , Dung Phan1, Pubudu N. Pathirana1, Malcolm Horne2, Laura Power3 & David Szmulewicz2,3,4 Parametric analysis of Cerebellar Ataxia (CA) could be of immense value compared to its subjective clinical assessments. This study focuses on a comprehensive scheme for objective assessment of CA through the instrumented versions of 9 commonly used neurological tests in 5 domains- speech, upper limb, lower limb, gait and balance. Twenty-three individuals diagnosed with CA to varying degrees and eleven age-matched healthy controls were recruited. Wearable inertial sensors and Kinect camera were utilised for data acquisition. Binary and multilabel discrimination power and intra-domain relationships of the features extracted from the sensor measures and the clinical scores were compared using Graph Theory, Centrality Measures, Random Forest binary and multilabel classifcation approaches. An optimal subset of 13 most important Principal Component (PC) features were selected for CA- control classifcation. This classifcation model resulted in an impressive performance accuracy of 97% (F1 score = 95.2%) with Holmesian dimensions distributed as 47.7% Stability, 6.3% Timing, 38.75% Accuracy and 7.24% Rhythmicity. Another optimal subset of 11 PC features demonstrated an F1 score of 84.2% in mapping the total 27 PC across 5 domains during CA multilabel discrimination. In both cases, the balance (Romberg) test contributed the most (31.1% and 42% respectively), followed by the peripheral tests whereas gait (Walking) test contributed the least. These fndings paved the way for a better understanding of the feasibility of an instrumented system to assist informed clinical decision- making. -
The Founder of the Creative Destruction Lab Describes Its Moonshot Mission to Create a Canadian AI Ecosystem
The founder of the Creative Destruction Lab describes its moonshot mission to create a Canadian AI ecosystem. Thought Leader Interview: by Karen Christensen Describe what happens at the Creative Destruction Lab by companies that went through the Lab. When we finished our (CDL). fifth year in June 2017, we had exceeded $1.4 billion in equity The CDL is a seed-stage program for massively scalable science- value created. based companies. Some start-ups come from the University of Toronto community, but we now also receive applications from What exactly does the Lab provide to entrepreneurs? Europe, the U.S. (including Silicon Valley), Israel and Asia. Start-up founders benefit from a structured, objectives-oriented We launched the program in September 2012, and each process that increases their probability of success. The process is autumn since, we’ve admitted a new cohort of start-ups into orchestrated by the CDL team, while CDL Fellows and Associ- the program. Most companies that we admit have developed a ates generate the objectives. Objective-setting is a cornerstone working prototype or proof of concept. The most common type of the process. Every eight weeks the Fellows and Associates set of founder is a recently graduated PhD in Engineering or Com- three objectives for the start-ups to achieve, at the exclusion of puter Science who has spent several years working on a problem everything else. In other words, they define clear goals for an and has invented something at the frontier of their field. eight week ‘sprint’. Objectives can be business, technnology or The program does not guarantee financing, but the majority HR-oriented. -
The Fourth Paradigm
ABOUT THE FOURTH PARADIGM This book presents the first broad look at the rapidly emerging field of data- THE FOUR intensive science, with the goal of influencing the worldwide scientific and com- puting research communities and inspiring the next generation of scientists. Increasingly, scientific breakthroughs will be powered by advanced computing capabilities that help researchers manipulate and explore massive datasets. The speed at which any given scientific discipline advances will depend on how well its researchers collaborate with one another, and with technologists, in areas of eScience such as databases, workflow management, visualization, and cloud- computing technologies. This collection of essays expands on the vision of pio- T neering computer scientist Jim Gray for a new, fourth paradigm of discovery based H PARADIGM on data-intensive science and offers insights into how it can be fully realized. “The impact of Jim Gray’s thinking is continuing to get people to think in a new way about how data and software are redefining what it means to do science.” —Bill GaTES “I often tell people working in eScience that they aren’t in this field because they are visionaries or super-intelligent—it’s because they care about science The and they are alive now. It is about technology changing the world, and science taking advantage of it, to do more and do better.” —RhyS FRANCIS, AUSTRALIAN eRESEARCH INFRASTRUCTURE COUNCIL F OURTH “One of the greatest challenges for 21st-century science is how we respond to this new era of data-intensive -
A Strategic Metagame Player for General Chesslike Games
From: AAAI Technical Report FS-93-02. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved. A Strategic Metagame Player for General Chess-Like Games Barney Pell* Computer Laboratory University of Cambridge Cambridge, CB2 3QG, UK b dp((~cl c am. ac Abstract game will transfer also to new games. Such criteria in- clude the use of learning and planning, and the ability This paper reviews the concept of Metagameand to play more than one game. discusses the implelnentation of METAGAMER,a program which plays Metagame in the class of 1.1 Bias when using Existing Games symmetric chess-like games, which includes chess, However,even this generality-oriented research is sub- Chinese-chess, checkers, draughts, and Shogi. The ject to a potential methodological bias. As the human l)rogram takes as input the rules of a specific game researchers know at the time of program-development and analyses those rules to construct for that game which specific game or games the program will be tested an efficient representation and an evaluation func- on, it is possible that they import the results of their tion, both for use with a generic search engine. The own understanding of the game dh’ectly into their pro- strategic analysis performed by the program relates gn’am. In this case, it becomes difficult to determine a set of general knowledgesources to the details of whether the subsequent performance of the program the particular game. Amongother properties, this is due to the general theory it implements, or merely analysis determines the relative value of the differ- to the insightful observations of its developer about the eat pieces in a given game. -
Abstract Counterexample-Based Refinement for Powerset
Abstract Counterexample-based Refinement for Powerset Domains R. Manevich1,†, J. Field2 , T. A. Henzinger3,§, G. Ramalingam4,¶, and M. Sagiv1 1 Tel Aviv University, {rumster,msagiv}@tau.ac.il 2 IBM T.J. Watson Research Center, [email protected] 3 EPFL, [email protected] 4 Microsoft Research India, [email protected] Abstract. Counterexample-guided abstraction refinement (CEGAR) is a powerful technique to scale automatic program analysis techniques to large programs. However, so far it has been used primarily for model checking in the context of predicate abstraction. We formalize CEGAR for general powerset domains. If a spurious abstract counterexample needs to be removed through abstraction refinement, there are often several choices, such as which program location(s) to refine, which ab- stract domain(s) to use at different locations, and which abstract values to compute. We define several plausible preference orderings on abstrac- tion refinements, such as refining as “late” as possible and as “coarse” as possible. We present generic algorithms for finding refinements that are optimal with respect to the different preference orderings. We also compare the different orderings with respect to desirable properties, in- cluding the property if locally optimal refinements compose to a global optimum. Finally, we point out some difficulties with CEGAR for non- powerset domains. 1 Introduction The CEGAR (Counterexample-guided Abstraction Refinement) paradigm [1, 3] has been the subject of a significant body of work in the automatic verification community. The basic idea is as follows. First, we statically analyze a program using a given abstraction. When an error is discovered, the analyzer generates an abstract counterexample, and checks whether the error occurs in the corre- sponding concrete execution path. -
Microhoo: Lessons from a Takeover Attempt Nihat Aktas, Eric De Bodt
MicroHoo: Lessons from a takeover attempt Nihat Aktas, Eric de Bodt, and Richard Roll This draft: July 14, 2010 ABSTRACT On February 1, 2008, Microsoft offered $43.7 billion for Yahoo. This was a milestone in the Microsoft versus Google battle to control the internet search industry and the related online advertising market. We provide an in-depth analysis of this failed takeover attempt. We attempt to identify the sources of overbidding (signaling, hubris-overconfidence, rational overpayment) and we show that the corporate control market has a disciplinary dimension but of an incidental and latent nature. Our results highlight the existence of takeover anticipation premiums in the stock prices of the potential targets. JEL classification: G34 Keywords: Overbidding; Competitive advantage; Rational overpayment; Latent competition Aktas de Bodt Roll Univ. Lille Nord de EMLYON Business UCLA Anderson France School 110 Westwood Plaza ECCCS Address 23 av. Guy de Collongue Los Angeles, CA 90095- 1 place Déliot - BP381 69130 Ecully 1481 59020 Lille Cédex France USA France Voice +33-4-7833-7847 +33-3-2090-7477 +1-310-825-6118 Fax +33-4-7833-7928 +33-3-2090-7629 +1-310-206-8404 E-mail [email protected] eric.debodt@univ- [email protected] lille2.fr 1 MicroHoo: Lessons from a takeover attempt 1. Introduction Fast Internet access, software as a service, cloud computing, netbooks, mobile platforms, one-line application stores,…, the first decade of the twenty-first century brought all the ingredients of a new technological revolution. These new technologies share one common denominator: the Internet. Two large competitors are face to face. -
Lukas Biewald
Lukas Biewald 823 Capp St., San Francisco, CA 94110 (650) 804 5470 lukas@crowdflower.com Awards Netexplorateur of the Year http://www.netexplorateur.org/ (2010) TechCrunch 50 http://techcrunch50.com (2009) First Place, Caltech Turing Tournament http://turing.ssel.caltech.edu Work Founder, CEO: CrowdFlower 2008 — Present • Built leading Labor-on-Demand company from the ground up. Designed and coded core technology. Built customer base up from nothing to 100 customers including several Fortune-500 companies. Hired 25 employees. • Raised two rounds of financing totalling $6.2 million in 2009 in tough economic climate from well-known angels and VCs including Trinity, Bessemer, Founders´ Fund, Auren Hoffman, Aydin Senkut, Manu Kumar, Gary Kremen and Travis Kalanick. Senior Scientist: Powerset 2007 — 2008 • As the 20th employee, created and led two core teams: metrics and search ranking. • Developed the Amazon Mechanical Turk interface, identified as a key technology in Microsoft’s $100 million acquisition. Relevance Engineer, Engineering Manager: Yahoo! Inc. 2005 — 2007 • Technical lead for research, development and deployment of new web search ranking functions in five major markets. • Chosen as most productive employee in Applied Science business unit year end review. Research Assistant: Stanford AI Lab (sail.stanford.edu) 2003 — 2004 • Researched word-sense disambiguation, machine translation and Japanese word segmentation. • Published two papers with over 100 citations. Education Stanford University 1998 — 2004 BS in Mathematical and Computational Science with Honors (2003) MS in Computer Science with Concentration in Artificial Intelligence (2004) Publications David Vickrey, Lukas Biewald, Marc Teyssier, and Daphne Koller Word-Sense Disambiguation for Machine Translation. Conference on Empirical Methods in Natural Language Processing (EMNLP), 2005. -
Abstract Domain of Boxes
BOXES: Abstract Domain of Boxes Arie Gurfinkel and Sagar Chaki Software Engineering Institute Carnegie Mellon University January 28, 2011 © 2011 Carnegie Mellon University NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder. This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at [email protected]. This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for -
An Overview of Hadoop
Hadoop Jon Dehdari Introduction Hadoop Project Distributed Filesystem MapReduce Jobs Hadoop Ecosystem Current Status An Overview of Hadoop Jon Dehdari The Ohio State University Department of Linguistics 1 / 26 Hadoop What is Hadoop? Jon Dehdari Introduction Hadoop is a software framework for scalable distributed Hadoop Project computing Distributed Filesystem MapReduce Jobs Hadoop Ecosystem Current Status 2 / 26 Hadoop MapReduce Jon Dehdari Introduction Hadoop Project Distributed Follows Google's MapReduce framework for distributed Filesystem computing MapReduce Jobs Hadoop Ecosystem Scalable - from one computer to thousands Current Status Fault-tolerant - assumes computers will die Cheap - uses commodity PCs, no special hardware needed More active role in distributed computing than Grid Engine, Torque, PBS, Maui, Moab, etc., which are just schedulers 3 / 26 Hadoop Map & Reduce Jon Dehdari Introduction Based on the functional programming concepts of Hadoop Project higher-order functions: Distributed Filesystem Map MapReduce Jobs FunProg: apply a function to every element in a list, Hadoop Ecosystem return new list Current Status MapRed: apply a function to every row in a file block, return new file block Reduce (Fold) FunProg: recursively apply a function to list, return scalar value MapRed: recursively apply a function to file block, return less-composite value than before 4 / 26 Hadoop Map & Reduce Jon Dehdari Introduction Based on the functional programming concepts of Hadoop Project higher-order functions: Distributed Filesystem Map -
Autonomous Horizons: the Way Forward Is a Product of the Office Air University Press 600 Chennault Circle, Bldg 1405 of the US Air Force Chief Scientist (AF/ST)
Autonomous Horizons The Way Forward A vision for Air Force senior leaders of the potential for autonomous systems, and a general framework for the science and technology community to advance the state of the art Dr. Greg L. Zacharias Chief Scientist of the United States Air Force 2015–2018 The second volume in a series introduced by: Autonomous Horizons: Autonomy in the Air Force – A Path to the Future, Volume 1: Human Autonomy Teaming (AF/ST TR 15-01) March 2019 Air University Press Curtis E. LeMay Center for Doctrine Development and Education Maxwell AFB, Alabama Chief of Staff, US Air Force Library of Congress Cataloging-in-Publication Data Gen David L. Goldfein Names: Zacharias, Greg, author. | Air University (U.S.). Press, publisher. Commander, Air Education and Training | United States. Department of Defense. United States Air Force. Command Title: Autonomous horizons : the way forward / by Dr. Greg L. Zacha- Lt Gen Steven L. Kwast rias. Description: First edition. | Maxwell Air Force Base, AL : AU Press, 2019. “Chief Scientist for the United States Air Force.” | Commander and President, Air University Lt Gen Anthony J. Cotton “January 2019.” |Includes bibliographical references. Identifiers: LCCN 2018061682 | ISBN 9781585662876 Commander, Curtis E. LeMay Center for Subjects: LCSH: Aeronautics, Military—Research—United States. | Doctrine Development and Education United States. Air Force—Automation. | Artificial intelligence— Maj Gen Michael D. Rothstein Military applications—United States. | Intelligent control systems. | Autonomic -
Angle Measurement Performance]
SURVEYING INSTRUMENTS SOKKIA SET1000•SET2000 SET3000•SET4000 POWERSET SERIES TOTAL STATIONS Introducing the Version 4.2 POWERSET Series Enjoy the benefits of all the latest technology with standardized SDR software you can upgrade with ease With the integration of corrective hardware sensors, self-collimating soft- ware and the most powerful, easy-to-use field application programming ever, SOKKIA introduces a new era in CAS (Computer Aided Surveying). The POWERSET Series sets a new standard for surveying efficiency: 1 ) an extensive range of surveying software; 2) a large internal memory for high-speed data processing; 3) reliable memory cards for storage of survey data. • Entirely new design features a miniaturized telescope unit that makes sighting as easy as using a theodolite. Thanks to the POWERSET Series' advanced optics, you can use reflective sheet targets and standard glass prisms for greater flexibility in the field. • The dual-axis compensator and collimation program ensure consistently accurate measurements. • The POWERSET Series is designed for maximum ease of use. Large screens on each side of the instrument are easy to read in any field conditions, and the keyboards on both faces feature full alphanumeric keys. • All these advanced functions are packed into an incredibly compact instrument weighing a mere 5.6kg (12.4 lbs.) SET1000/SET2000 Dist. meas. with reflecting prism Range: 3,500m (11,400ft.)* Accuracy: ±(2+2ppmxD)mm** Dist. meas. with reflective sheet target Range: 120m (390ft.)*** Accuracy: ±(4+3ppmxD)mm** Angle measurement Display resolution: 0.5"/0.1 mgon or 1"/0.2mgon Accuracy: SET1000 1"(0.3mgon) SET2000 2"(0.6mgon) SET3000 Dist.