Lava Tubes May Be Havens for Ancient Alien Life and Future Human Explorers

Total Page:16

File Type:pdf, Size:1020Kb

Lava Tubes May Be Havens for Ancient Alien Life and Future Human Explorers CORE CONCEPTS Lava tubes may be havens for ancient alien life and future human explorers CORE CONCEPTS Sid Perkins, Science Writer Sometimes, there’s more to a lava flow than meets the If Mars ever hosted life, it may have moved into eye. Beneath a fresh, sterile, and steaming hot surface, such refugia as the planet evolved and surface molten rock can still be chewing its way into the conditions became increasingly harsh. Indeed, some ground, carving caves that can stretch dozens of kilo- researchers suggest that microbial life may yet hang meters. On Earth, such lava tubes (once cooled) are a on in the Red Planet’s underground havens. “On Mars challenge for spelunkers. On the moon and Mars, and other places, lava tubes have the potential to have these features are piquing the interest of planetary made the difference between life and death,” says geologists, astrobiologists, and explorers. Pascal Lee, a planetary researcher at NASA Ames Re- Besides providing a window into geological his- search Center in Mountain View, CA. tory, lava tubes offer environmental conditions that Wherever lava tubes are found, they’ll be scientif- are relatively stable and likely to be more hospitable ically exotic, says Lee. And if a mission to another than those found on a planet’s surface. This may make world is designed to explore such an underground the tubes appealing to life-forms of all sizes, from mi- feature as well as the surface, “it’ll be like getting crobes to spacefaring colonists from Earth. two planets for the price of one,” he notes. Lava tubes on the moon and Mars—larger than this one in Iceland’s Surtshellir-Stefanshellir lava tube system—could provide habitat for spacefaring colonists as well as opportunities for geological exploration. Image credit: Under Earth Images/Dave Bunnell. Published under the PNAS license. www.pnas.org/cgi/doi/10.1073/pnas.2012176117 PNAS Latest Articles | 1of4 Downloaded by guest on September 25, 2021 evidence has emerged. Images snapped by orbiting probes show openings into underground voids. Often referred to as skylights, these openings probably formed when the roofs of lava tubes fell in. The first such feature on the moon—a hole 50 meters across and dozens of meters deep—was discovered more than a decade ago in an image captured by Japan’s SELENE orbiter (3). Many more skylights have been found on the moon since then, and hundreds of pos- sible skylights have been spotted on images snapped by Mars orbiters, the first of which were taken in the mid-1970s (4). Earth’s lava tubes range in age from a few years old, such as those on the slopes of Hawaii’s Kilauea volcano, to a few hundred thousand years or more. The freshest tubes have yet to be mapped, but in some areas they’re known to stretch dozens of kilo- meters. In California’s Lava Beds National Monument, for example, more than 800 lava tubes together ex- tend at least 350 kilometers. Habitat for Humanity? Researchers have for decades speculated that lava The shadow cast by a skylight into a lava tube beneath the moon’s Mare Tranquillitatis suggests the feature may be a little more than 100 meters deep. tubes on the moon and elsewhere could offer prime Image credit: NASA/Goddard/Arizona State University. space for setting up living quarters for colonists (5). The tubes are appealing for many reasons, as Laura Kerber, a geologist at NASA’s Jet Propulsion Labo- Grow With the Flow ratory in Pasadena, CA, explained at the caves con- Lava tubes can form almost anywhere molten rock ference (6). First, the environment is protected from streams from the ground. Steady flows of low-viscosity radiation such as cosmic rays, solar energetic particles, lava are the most likely to form lava tubes. They can and ultraviolet light. Second, the rock roof would be a form in a way akin to how rivers ice over during a cold shield against micrometeorites that could otherwise spell. As flowing lava loses heat to the overlying air, its puncture spacesuits and buildings. And as on Earth, — surface cools and solidifies but it does so more the underground environment would be buffered quickly at the edges of the flow, where material moves from temperature swings. On the moon, those varia- slowly. Eventually, the molten flow freezes over from tions are extreme. Data gathered by the Lunar Re- shore to shore, which insulates the underlying lava by connaissance Orbiter between 2009 and 2013 reveal robbing it of the ability to directly radiate heat upward that temperatures near the lunar equator can reach or be cooled by winds, he explains. Then, when the 120 °C in the daytime and plunge to –130 °C during source of lava begins to wane or as the molten flow the two-week-long night. chews or melts its way into the underlying rocks, or Whether colonists could actually take advantage of both, lava drains from the conduit and leaves behind a those benefits is another question. Considering the smooth-sided, steep-walled cavern. likely instability of material around the edges of sky- Lava flows can melt their way into underlying rocks. lights, as well as the limited mobility of existing If the flow is fast and turbulent, lava can erode spacesuits, it would be a big challenge to lower peo- downward as much as 1 meter each day, according to ple into a hole in the ground and then get them back Alan Whittington, a geologist at University of Texas out, says Whittington. Then there’s the question of San Antonio, speaking at the Third International whether lava tubes are safe, says NASA’s Lee. Despite Planetary Caves Conference in San Antonio, TX, in what he describes as the romantic idea of making a February (1). So the tubes created by voluminous and home in these features, “the truth about caves is that long-lived flows can be huge. The longest known lava they’re dangerous,” he says. That’s especially likely to tube on Earth—65-kilometer-long Kazumura Cave, on be true near skylights, where the roof has already the Big Island of Hawaii—stretches almost to the sea demonstrated the propensity to collapse. Human ac- from the Kilauea volcano. In some spots, the tube tivity could well destabilize them even further, or measures 21 meters wide and 18 meters tall (2)—a cause avalanches of material around the edges of the profile big enough to hold a good-sized house. skylights. “Lava tubes may be exciting to explore but But lava tubes on the moon and Mars are almost not that safe to live in,” Lee says. certainly bigger. Most of these features likely date from 3 to 4 billion years ago, when both bodies had Holes without Drilling frequent volcanic activity. Grooved features known as Whether or not lava tubes provide homes for pio- sinuous rilles have long been suspected to be col- neering lunar colonists, they’ll provide plenty of oppor- lapsed lava tubes; and more recently, stronger tunities for geological research. As Charity Phillips-Lander, 2of4 | www.pnas.org/cgi/doi/10.1073/pnas.2012176117 Perkins Downloaded by guest on September 25, 2021 an astrobiologist at Southwest Research Institute in rovers, suggest that billions of years ago Mars was warmer, San Antonio, TX, remarked at the Planetary Caves wetter, and had a thicker atmosphere than it does today. If conference, “caves provide access to the subsurface life ever evolved on the Red Planet, and if it was anything ” without the added weight of a drilling payload. like life on Earth, it wouldn’t be living on the Mars surface Apollo astronauts, as part of their rock- and soil- today, says Lee. Besides being cold and arid, the surface is collecting activities on the lunar surface, never drilled exposed to high amounts of ultraviolet radiation. The lack more than 2.9 meters into the surface. In contrast, the of a strong magnetic field means that cosmic rays and walls of lunar skylights can measure tens of meters thick and show distinct layers. Some of those layers energetic particles from the sun are free to stream down, may be ancient lava flows that could be dated to show adding to the radiation hazard. Static electricity in the when and how often volcanic activity occurred, Kerber planet’s fierce dust storms helps create reactive chemicals notes. Sandwiched between those strata may be lay- called perchlorates that are toxic to any Earthlike life. ers of regolith, or pulverized rock, formed by the in- cessant pounding of meteorite impacts. The thickness of such layers may help researchers estimate the rates “If life exists there, or existed there in the past, it at which such impacts occurred in the past. The rates probably will be best maintained in the subsurface, and timing of such impacts would be roughly the same away from harsh surface conditions and processes.” as those Earth experienced, so they may shed light — on the planet’s environment as life emerged—and Charity Phillips-Lander whether it was snuffed out before emerging again. Moreover, detailed chemical analyses of those mate- “But when you look at the subsurface, all of a rials may reveal information about past variations in ” the solar wind, whose charged particles become sudden a lot of these problems go away, Lee notes. “ trapped in the regolith. Tracing the history of the solar Phillips-Lander agrees: If life exists there, or existed wind could also shed light on variations in Earth’s there in the past, it probably will be best maintained in ancient climate.
Recommended publications
  • New Candidate Pits and Caves at High Latitudes on the Near Side of the Moon
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2733.pdf NEW CANDIDATE PITS AND CAVES AT HIGH LATITUDES ON THE NEAR SIDE OF THE MOON. 1,2 1,3,4 1 2 Wynnie Avent II and Pascal Lee ,​ S​ ETI Institute, Mountain View, VA, USA, V​ irginia Polytechnic Institute ​ ​ ​ 3 4 ​ and State University Blacksburg, VA, USA. M​ ars Institute, N​ ASA Ames Research Center. ​ ​ Summary: 35 new candidate pits are identified ​ in Anaxagoras and Philolaus, two high-latitude impact structures on the near side of the Moon. Introduction: Since the discovery in 2009 of the Marius Hills Pit (Haruyama et al. 2009), a.k.a. the “Haruyama Cavern”, over 300 hundred pits have been identified on the Moon (Wagner & Robinson 2014, Robinson & Wagner 2018). Lunar pits are small (10 to 150 m across), steep-walled, negative relief features (topographic depressions), surrounded by funnel-shaped outer slopes and, unlike impact craters, no raised rim. They are interpreted as collapse features resulting from the fall of the roof of shallow (a few Figure 1: Location of studied craters (Polar meters deep) subsurface voids, generally lava cavities. projection). Although pits on the Moon are found in mare basalt, impact melt deposits, and highland terrain of the >300 Methods: Like previous studies searching for pits pits known, all but 16 are in impact melts (Robinson & (Wagner & Robinson 2014, Robinson & Wagner 2018, Wagner 2018). Many pits are likely lava tube skylights, Lee 2018a,b,c), we used imaging data collected by the providing access to underground networks of NASA Lunar Reconnaissance Orbiter (LRO) Narrow tunnel-shaped caves, including possibly complex Angle Camera (NAC).
    [Show full text]
  • HAUGHTON-MARS PROJECT: Lessons for the Selection of a Landing Site/Exploration Zone for Human Missions to the Surface of Mars
    First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1058.pdf HAUGHTON-MARS PROJECT: Lessons for the Selection of a Landing Site/Exploration Zone for Human Missions to the Surface of Mars. Pascal Lee1,2,3, Stephen Braham1, Terry Fong3, Brian Glass3, Stephen J. Hoffman4, Christopher Hoftun1, Sarah Huffman1, Brage W. Johansen1, Kira Lorber1, Christopher P. McKay3, Robert Mueller, John W. Schutt1, Karen Schwartz1, Jesse T. Weaver1, Kris Zacny6. 1Mars Institute, NASA Research Park, Moffett Field, CA 94035, USA, [email protected]. 2SETI Institute, 3NASA Ames Research Center, 4NASAJohnson Space Center, 5NASA Kennedy Space Center, 6Honeybee Robotics. Exploration Zone Name: Haughton-Mars Project, Devon Islamd Habitat Site Coordinates: 75o 26’ N, 89o 52’ W The Haughton-Mars Project (HMP) is an international multidisciplinary field research project focused on Mars ana- log studies at the Haughton impact crater site on Devon Island, High Arctic. HMP analog studies include both sci- ence and exploration investigations. The project began in 1997, and has been hosting NASA-supported research each year since. Haughton Crater is approximately 20 km in diameter and 23 million years old. The crater is re- markably well preserved. Field operations at HMP are based out of a permanent field camp, the HMP Research Sta- tion (HMPRS), established in the northwestern rim area of Haughton Crater. Figure 1: Map of the Haughton-Mars Project (HMP) “Exploration Zone”. This map illustrates, in the same smanner as a Landing Site/Exploration Zone (LS/EZ) proposed for Mars, the main regions of interet (ROIs) within an EZ extending out to 100 km.
    [Show full text]
  • Science Organising Committee Local Organising Committee Katherine Joy (Chair) Romain Tartese Mahesh Anand John Pernet-Fisher
    Science Organising Committee Local Organising Committee Katherine Joy (Chair) Romain Tartese (Chair) Romain Tartese Katherine Joy Mahesh Anand Patricia Clay John Pernet-Fisher Samantha Bell Kerri Donaldson-Hanna Vera Fernandes Evelyn Furi John Pernet-Fisher Jessica Flahaut Sarah Crowther Greg Schmitt Gemma Coleman James Carpenter Updated: 27 March 2019 European Lunar Symposium Manchester 2019 Meeting information Welcome you to Manchester for the 7th European Lunar Symposium (ELS). We are hoping to have a great meeting, demonstrating the diversity of the current lunar research in Europe and elsewhere, and continuing to provide a platform to the European lunar researchers for networking as well as exchanging news ideas and latest results in the field of lunar exploration. We gratefully acknowledge the support of the University of Manchester, NASA SSERVI, the Royal Astronomical Society, the Science and Technology Facilities Council, Europlanet, and the European Space Agency. Our special thanks to our SSERVI colleagues Kristina Gibbs, Jennifer Baer, Maria Leus, and Ashcon Nejad, and to Gemma Coleman at the University of Manchester for their contribution to the meeting preparation and program implementation. Members of the Science Organising Committee are thanked for their input in putting together an exciting program and for volunteering to chair various sessions in this meeting. Meeting Venue Please note that there are two different venues: • The reception event on the 20 th May will be held at the Manchester Museum in the south of the city, close to the University of Manchester. • The symposium on 21 st -23 rd May will be held at the Science and Industry Museum – Garratt suite conference facilities.
    [Show full text]
  • EPSC-DPS2011-1716, 2011 EPSC-DPS Joint Meeting 2011 C Author(S) 2011
    EPSC Abstracts Vol. 6, EPSC-DPS2011-1716, 2011 EPSC-DPS Joint Meeting 2011 c Author(s) 2011 Phobos and Deimos: Science Goals for Human Exploration Pascal Lee (1,2, 3) (1) Mars Institute, USA, (2) SETI Institute, USA, (3) NASA Ames Research Center, USA ([email protected]) Abstract The nature and origin of the two moons of Mars, Phobos and Deimos, are outstanding unknowns. Solving this mystery is considered the single most important science goal to be addressed in their exploration [1]. When considered in the broader and longer-term context of the human exploration of Mars, human missions to Phobos and Deimos offer exciting intermediate opportunities for science. Four key science objectives can be met by humans, that would be difficult to achieve well by robotic means alone: i) Collect samples representative of the bulk of Phobos and Deimos; ii) Image in detail the subsurface and interior of Phobos and Deimos via seismic tomography; iii) Drill deep (>5m) into Phobos and Deimos to investigate their interior and extract subsurface samples; iv) Search for accreted materials in the regolith of Phobos and Deimos that might have originated in the asteroid belt or on Mars. Figure 1: Artist concept of human exploration tools for Phobos and Deimos (Mars Inst./W. Myers, 2011). 1. Introduction 1) Targeted collection of samples representative of After four decades of Mars exploration by spacecraft, Phobos and Deimos’s bulk. This objective stems the nature and origin of Phobos and Deimos remain from the growing realization that understanding
    [Show full text]
  • LAURA KERBER Jet Propulsion Laboratory [email protected] 4800 Oak Grove Dr
    LAURA KERBER Jet Propulsion Laboratory [email protected] 4800 Oak Grove Dr. Pasadena, CA __________________________________________________________________________________________ Education September 2006-May 2011 Brown University, Providence, RI PhD, Geological Sciences (May 2011) MS, Engineering, Fluid Mechanics (May 2011) MS, Geological Sciences (May 2008) August 2002-May 2006 Pomona College, Claremont, CA Major: Planetary Geology/Space Science Minor: Mathematics May 2002 Graduated Cherry Creek High School, Greenwood Village, Colorado, highest honors Research Experience and Roles September 2014- Present Jet Propulsion Laboratory, Research Scientist PI of Discovery Mission Concept Moon Diver Deputy Project Scientist, 2001 Mars Odyssey Yardang formation and distribution on Mars and Earth Ongoing development of end-to-end Martian sulfur cycle model, including microphysical processes, photochemistry, and interaction with the surface Measurement of wind over complex surfaces Microscale wind and erosion processes in cold polar deserts Science liaison to the Mars Program Office, Next Mars Orbiter (NeMO) Member of 2015 NeMO SAG Member of 2015 ICE-WG (In-situ resource utilization and civil engineering HEOMD working group) Science lead on several internal formulation studies, including a “Many MERs to Mars” concept study; “RSL Exploration with the Axel Extreme Terrain Robot” strategic initiative; “Autonomous Recognition of Signs of Life” spontaneous RTD; Moon Diver Instrument Trade Study; etc. Lead of Citizen Scientist “Planet Four:
    [Show full text]
  • Advanced Developmental Architectures for Our Moon Ma
    70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by the International Astronautical Federation (IAF). All rights reserved. IAC-19,A3,IP,7,x52520 The USC ADAM Project: Advanced Developmental Architectures for Our Moon Madhu Thangavelua*, Duy Nguyenb, Ivan Figueroac, Danielle Watersd Martin Grecoe, Caitlyn Alexanderf, Zachery Batesg, Jeffrey Asherh, Alexander Sullivani, Robert Antypasj a Conductor, ASTE527 Graduate Space Concept Synthesis Studio, Department of Astronautical Engineering, Viterbi School of Engineering, Rapp Research Building, & the School of Architecture, University of Southern California, University Park, Los Angeles, California 90089-1191. [email protected] b-j Graduate Student, Department of Astronautical Engineering, Viterbi School of Engineering, University of Southern California, Rapp Research Building, University Park, Los Angeles, California 90089-1191. * Corresponding Author "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations;". – White House Space Policy Directive #1 Abstract The US administration has laid out, in the clearest terms yet in many years, what the nation expects NASA to
    [Show full text]
  • Flyer for Mission:Mars
    MISSION: MARS By Pascal Lee Paperback 48 pages Publisher: Scholastic Recommended for Ages 9-12 (Grades 3-6) ISBN 13: 978-0-54-556532-5 Price: USD$6.99 Available in Bookstores on November 1, 2013 Available Now at: www.scholastic.com/missionmars Advance Praise for MISSION: MARS "Pascal Lee is a true pioneer of Mars exploration. This book makes me want to put on a spacesuit and go to Mars!" – Buzz Aldrin, Apollo 11 astronaut, Author of Mission to Mars About The Book Subzero temperatures, killer rays, raging dust storms…Mars is a hostile planet. Could anything survive there? One job for Future Mars Explorers: Stay alive and help search for alien life. The mission now: Start training to become one of the first human explorers of the Red Planet. Guided by renowned Mars expert Pascal Lee, readers will get an incredible behind-the-scenes look at what it will take to send humans to the Red Planet. They will discover how to gear up for survival, navigate a spaceship, search for alien life, and so much more. Readers will also get a sneak peek at the latest designs for future mars ships, spacesuits, and exploration rovers. The future of space exploration starts now! Extra! Extra! Visit www.scholastic.com/missionmars to watch Mars gear-testing and other behind-the-scenes videos. The website includes a teaching guide with Common Core and STEM connections. About The Author Dr. Pascal Lee is chairman of the Mars Institute and a planetary scientist at the SETI Institute. He is also director of the NASA Haughton-Mars Project at NASA Ames Research Center.
    [Show full text]
  • Determining the Structural Stability of Lunar Lava Tubes
    46th Lunar and Planetary Science Conference (2015) 2174.pdf DETERMINING THE STRUCTURAL STABILITY OF LUNAR LAVA TUBES. D. M. Blair1*, L. Chappaz2, R. Sood2, C. Milbury1, H. J. Melosh1, K. C. Howell2, and A. M. Freed1. 1,* Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA, [email protected]; 2School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA. Introduction: Recent in-depth analysis of lunar wider lava tube or a thinner roof, but do not quantify gravity data from the Gravity Recovery And Interior what difference an arched roof would make. Laboratory (GRAIL) spacecraft has suggested the In caves on Earth that occur in bedded rock, failure possibility of lava tubes on the Moon with diameters in of the cave’s roof tends to occur one bed at a time, excess of 1 km [1, 2]. Could such features be progressing upwards [9]. This means that the structurally stable? What is the theoretical maximum mechanical “roof thickness” of a lava tube should be size of a lunar lava tube? Here we attempt to address considered to be the thickness of the flows that form those questions and improve on prior estimates of the the roof and not the total depth at which the tube is same by using modern numerical modeling techniques. buried. Lava flows thicknesses on the moon vary over Background: The presence of sublunarean voids a broad range, from 1–14 m in the skylights in Mare has recently been confirmed via the observation of Tranquilitatis and elsewhere [5] to ~80–600 m in "skylights" in several lunar maria [3, 4, 5].
    [Show full text]
  • Phobos MMX Science Workshop 2016, Berlin, April 25-26 Version 3.2
    Phobos MMX Science Workshop 2016, Berlin, April 25-26 Version 3.2 Phobos MMX Science Workshop 2016, Berlin, April 25-26 Venue Technische Universität Berlin Hardenbergstraße 16-18, 10623 Berlin Ground floor, room HBS 005. How to get to the Venue From S/U-Bahn station Zoologischer Garten, it is a five minute walk to the workshop venue building (HBS in location plan above). Services to station Zoologischer Garten: S-Bahn: Station Zoologischer Garten, Lines S5, S7, S75 (Red and Purple Lines) U-Bahn: Station Zoologischer Garten, Lines U2, U9 (Red and Orange Lines) Bus: Station Zoologischer Garten, Line X9 Regional Train: Station Zoologischer Garten, Lines RB14, RE7 Arriving from Tegel Airport: From Tegel airport take the Express bus X9 that reaches the station Zoologischer Garten directly. Arriving from Schönefeld Airport: From Schönefeld airport please take the regional train RB14 or RE7 that reach the station Zoologischer Garten directly or use the S-Bahn S45 to station Bundesplatz (via Südkreuz), and from there change to U-Bahn U9 (direction to Osloer Straße) to the station Zoologischer Garten. Arriving from Berlin‘s Central Station Hauptbahnhof: Please take any S-Bahn heading West, e.g. towards Potsdam, Charlottenburg etc. All of them reach the station Zoologischer Garten directly. Wifi Connection TU Berlin does provide an eduroam wifi network. If your home institution provides you with eduroam please configure your device at your home institution to get easy internet access at TU Berlin by connecting to the eduroam network with your username and password of your home institution. For all others wifi guest accounts will be provided.
    [Show full text]
  • Special Showing: Passage to Mars
    Home Announcements Meetings Star Parties Calendar Newsletter Membership Contact About SMCAS General Meeting and Presentation on Friday September 7, 2018 Dr Pascal Lee Chairman, Mars Institute; Planetary Scientist, SETI Special Showing: Passage to Mars Friday, September 7, 2018 , College of San Mateo, Building 36 SMCAS General meeting at 7:00 p.m. ISC Room, room 110 Presentation at 8:00 p.m. Planetarium Free and open to members and friends of SMCAS, free parking (lots 5 or 6). Prepare yourself for an adventure! Before humans make it to Mars, they must conquer the Arctic. 'Passage to Mars' is the incredible true story of six explorers led by Dr Lee who embark on a treacherous, 2,000-mile journey across the forbidding ice of the Northwest Passage - an alien voyage on planet Earth designed to prepare NASA astronauts for an eventual mission to Mars. SMCAS will be showing a special presentation of of the documentary of the adventure: 'Passage to Mars'. James Cameron describes it: Dr Lee 2nd from right 'Captures the truth of exploration - the will to survive against the odds. Gripping!' Dr Pascal Lee will be on hand to introduce the video, set it in context, and answer questions at the end. Dr Pascal Lee is a planetary scientist with two non-profit research organizations, the Mars Institute and the SETI Institute. He is also director of the NASA Haughton-Mars Project (HMP) at NASA Ames Research Center in Mountain View, California. His research focuses on Mars (in particular the history of water on Mars), asteroids, and the moons of Mars, Phobos and Deimos.
    [Show full text]
  • Moon/Mars Science and Exploration in Pressurized Rovers: Early Lessons from Analog Studies at the Haughton-Mars Project Site, Devon Island, High Arctic
    40th Lunar and Planetary Science Conference (2009) 2498.pdf MOON/MARS SCIENCE AND EXPLORATION IN PRESSURIZED ROVERS: EARLY LESSONS FROM ANALOG STUDIES AT THE HAUGHTON-MARS PROJECT SITE, DEVON ISLAND, HIGH ARCTIC. Pascal Lee1, 2, 3, Michael Gernhardt4, Andrew Abercromby4, Stephen Braham1,5, Tom Chase6, Jean-Marc Comtois7, Matt Deans3, Rainer Effenhauser4, Terry Fong3, Charles Frankel8, Brian Glass3, Ed Hodgson6, Stephen J. Hoffman4, Jeffrey A. Jones4, Jonathan Nelson1, John W. Schutt1, Marcelo Vasquez9. 1Mars Institute (NASA Research Park, Moffett Field, CA 94035-0006, USA, [email protected]), 2SETI Institute, 3NASA Ames Research Cen- ter, 4NASA Johnson Space Center, 5Simon Fraser University, 6Hamilton Sundstrand, 7Canadian Space Agency, 8Middlebury College, 9National Space Biomedical Research Institute. Introduction: An important option in Moon/Mars Objectives: During the recent HMP-2008 field human exploration architectures considered in NASA’s campaign, the use of two SPRs working in tandem – a Project Constellaton is the use of pressurized rovers for mode of vehicular exploration currently examined by conducting long-range (tens of km), multiple-day ex- Constellation - was investigated, with the following cursions or traverses. Since 1997, practical operational two primary objectives: 1) to understand better the experience with planning and implementing planning and implementation requirements (including Moon/Mars-relevant science-driven long-range vehicu- remote ops support) for long-range science-driven SPR lar traverses across unprepared rocky terrain has been and dual-SPR traverses, including SPR-based EVAs; accumulated at the Haughton-Mars Project (HMP) site 2) to test and mature quantitative metrics for evaluat- on Devon Island, High Arctic, in particular using ing the productivity of science and exploration SPR (since 2003) the HMP’s Mars-1 Humvee Rover, a traverses and EVAs.
    [Show full text]
  • The Geologic Context of Major Lunar Mare Pits. L
    3rd International Planetary Caves 2020 (LPI Contrib. No. 2197) 1048.pdf THE GEOLOGIC CONTEXT OF MAJOR LUNAR MARE PITS. L. Kerber1 L. M. Jozwiak2, J. Whitten3, R.V. Wagner4, B.W. Denevi2, , The Moon Diver Team. 1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA, 91109 ([email protected]). 2Johns Hopkins Applied Physics Laboratory, Laurel, MD, 20723, 3Tulane University, New Orleans, LA, 70118, 4Arizona State Univeristy, Tempe, AZ, 85287. Introduction: In 2009, the Kaguya spacecraft dis- surface void [3]. The pit is located a few kilometers to covered several large pits in the lunar surface [1]. Later the west of the Rimae Burg graben, and could be relat- Lunar Reconaissance Orbiter Camera (LROC) images ed [7]. Compositionally, the pit is located in a deposit captured these pits in greater detail, revealing that of low- to very low-Ti and high Al2O3 lavas that extend some of them expose tens of meters of in-situ lava bed- from Lacus Mortis across the larger Mare Frigoris re- rock cross-sections in their walls [2,3]. Such exposures gion [8]. The Lacus Mortis region itself is a small, offer tantalizing natural drill-holes through the regolith semi-circular mare deposit to the south of Mare Frigor- and into the lunar maria. In particular, the pits provide is, and appears to be composed of a single basaltic unit the opportunity to examine maria deposits from the top [8]. The Lacus Mortis pit would provide access to 5-6 of the regolith, through the regolith/bedrock interface, layers of undersampled Al-rich lavas [8].
    [Show full text]