Physics Illinois News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EUGENE PAUL WIGNER November 17, 1902–January 1, 1995
NATIONAL ACADEMY OF SCIENCES E U G ENE PAUL WI G NER 1902—1995 A Biographical Memoir by FR E D E R I C K S E I T Z , E RICH V OG T , A N D AL V I N M. W E I NBER G Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1998 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of Atoms for Peace Awards, Inc. EUGENE PAUL WIGNER November 17, 1902–January 1, 1995 BY FREDERICK SEITZ, ERICH VOGT, AND ALVIN M. WEINBERG UGENE WIGNER WAS A towering leader of modern physics Efor more than half of the twentieth century. While his greatest renown was associated with the introduction of sym- metry theory to quantum physics and chemistry, for which he was awarded the Nobel Prize in physics for 1963, his scientific work encompassed an astonishing breadth of sci- ence, perhaps unparalleled during his time. In preparing this memoir, we have the impression we are attempting to record the monumental achievements of half a dozen scientists. There is the Wigner who demonstrated that symmetry principles are of great importance in quan- tum mechanics; who pioneered the application of quantum mechanics in the fields of chemical kinetics and the theory of solids; who was the first nuclear engineer; who formu- lated many of the most basic ideas in nuclear physics and nuclear chemistry; who was the prophet of quantum chaos; who served as a mathematician and philosopher of science; and the Wigner who was the supervisor and mentor of more than forty Ph.D. -
Annual-Report-BW Ceperley
Annual Report for Blue Waters Allocation January 2016 Project Information o Title: Quantum Simulations o PI: David Ceperley (Blue Waters professor), Department of Physics, University of Illinois Urbana-Champaign o Norm Tubman University of Illinois Urbana-Champaign (former postdoc), Carlo Pierleoni (Rome, Italy), Markus Holzmann(Grenoble, France) o Corresponding author: David Ceperley, [email protected] Executive summary (150 words) Much of our research on Blue Waters is related to the “Materials Genome Initiative,” the federally supported cross-agency program to develop computational tools to design materials. We employ Quantum Monte Carlo calculations that provide nearly exact information on quantum many-body systems and are also able to use Blue Waters effectively. This is the most accurate general method capable of treating electron correlation, thus it needs to be in the kernel of any materials design initiative. Ceperley’s group has a number of funded and proposed projects to use Blue Waters as discussed below. In the past year, we have been running calculations for dense hydrogen in order to make predictions that can be tested experimentally. We have also been testing a new method that can be used to solve the fermion sign problem and to find dynamical properties of quantum systems. Description of research activities and results During the past year, the following 4 grants of which Ceperley is a PI or CoPI, and that involve Blue Waters usage, have had their funding renewed. Access to Blue Waters is crucial for success of these projects. • “Warm dense matter”DE-NA0001789. Computation of properties of hydrogen and helium under extreme conditions of temperature and pressure. -
Lattice Dynamics of the Excitonic Insulator ${\Rm Ta} 2{\Rm Ni}({\Rm Se} {1-X}{\Rm S} X) 5$
PHYSICAL REVIEW B 104, 045102 (2021) Editors’ Suggestion Lattice dynamics of the excitonic insulator Ta2Ni(Se1−xSx)5 Mai Ye ,1,* Pavel A. Volkov ,1,† Himanshu Lohani,2 Irena Feldman,2 Minsung Kim,1 Amit Kanigel,2 and Girsh Blumberg 1,3,‡ 1Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA 2Department of Physics, Technion–Israel Institute of Technology, Haifa 32000, Israel 3National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia (Received 22 April 2021; accepted 9 June 2021; published 2 July 2021) Recently, we employed electronic polarization-resolved Raman spectroscopy to reveal the strongly correlated excitonic insulator (EI) nature of Ta2NiSe5 [Volkov et al., npj Quant. Mater. 6, 52 (2021)], and also showed that for Ta2Ni(Se1−xSx )5 alloys the critical excitonic fluctuations diminish with sulfur concentration x, exposing a cooperating lattice instability that takes over for large x [Volkov et al., arXiv:2104.07032]. Here we focus on the lattice dynamics of the EI family Ta2Ni(Se1−xSx )5 (x = 0,..., 1). We identify all Raman-active optical phonons of Ag (fully symmetric) and B2g (ac-quadrupole-like) symmetries (D2h point group) and study their evolution with temperature and sulfur concentration. We demonstrate the change of selection rules at temperatures below the orthorhombic-to-monoclinic transition at Tc (x) that is related to the EI phase. We find that Tc (x) decrease monotonically from 328 K for Ta2NiSe5 to 120 K for Ta2NiS5 and that the magnitude of lattice distortion also de- creases with the sulfur concentration x.Forx < 0.7, the two lowest frequency B2g phonon modes show strongly asymmetric line shapes at high temperatures due to Fano interference with the broad excitonic continuum present in a semimetallic state. -
The Early Years of Quantum Monte Carlo (1): the Ground State
The Early Years of Quantum Monte Carlo (1): the Ground State Michel Mareschal1,2, Physics Department, ULB , Bruxelles, Belgium Introduction In this article we shall relate the history of the implementation of the quantum many-body problem on computers, and, more precisely, the usage of random numbers to that effect, known as the Quantum Monte Carlo method. The probabilistic nature of quantum mechanics should have made it very natural to rely on the usage of (pseudo-) random numbers to solve problems in quantum mechanics, whenever an analytical solution is out of range. And indeed, very rapidly after the appearance of electronic machines in the late forties, several suggestions were made by the leading scientists of the time , - like Fermi, Von Neumann, Ulam, Feynman,..etc- which would reduce the solution of the Schrödinger equation to a stochastic or statistical problem which , in turn, could be amenable to a direct modelling on a computer. More than 70 years have now passed and it has been witnessed that, despite an enormous increase of the computing power available, quantum Monte Carlo has needed a long time and much technical progresses to succeed while numerical quantum dynamics mostly remains out of range at the present time. Using traditional methods for the implementation of quantum mechanics on computers has often proven inefficient, so that new algorithms needed to be developed. This is very much in contrast with what happened for classical systems. At the end of the fifties, the two main methods of classical molecular simulation, Monte Carlo and Molecular Dynamics, had been invented and an impressively rapid development was going to take place in the following years: this has been described in previous works [Mareschal,2018] [Battimelli,2018]. -
Atti E Memorie Dell’Ateneo Di Treviso
ATTI E MEMORIE DELL’ATENEO DI TREVISO nuova serie, numero 23 anno accademico 2005/06 Hanno contribuito all’attività dell’Ateneo di Treviso nell’anno accademico 2005-06: Ministero dei Beni Culturali e Ambientali Regione Veneto Comune di Treviso Fondazione Cassamarca - Treviso ISSN 1120-9305 © 2007 Ateneo di Treviso Palazzo dell’Umanesimo Latino - Riviera Giuseppe Garibaldi 13 - 31100 Treviso Autoriz. Tribunale Treviso n. 654 del 17/7/1987 - Dir. resp. Antonio Chiades Cura editoriale e stampa: Grafiche Antiga - Cornuda (Treviso) - ottobre 2007 INDICE Giuliano Romano - La nuova fisica . p. 9 Luigi Pianca - La rapsodia poetica di Sainte-Anne-La-Palud, di Tristan Corbière, nella traduzione bretono dei Pardons . » 21 Sante Rossetto - “Il Gazzettino”, un giornale alla ricerca della sua identità . » 33 Maria Silvia Bassignano - Franco Sartori Tarvisianus (1922- 2004) . » 41 Nadia Andriolo - L’eisanghelia contro Licofrone . » 49 Filippo Boscolo - I farmacisti bresciani in età romana . » 55 Annarosa Masier - Marcus Licinius Crassus Frugi e il monu- mento di Segobriga. Nuove considerazioni . » 67 Armando Mammino - Attualità dell’ingegneria civile ed infra- strutturale nel ri-disegno del territorio globalizzato; le di - namiche storiche che alimentano la palingenesi delle terre abitate . » 77 Ferdy Hermes Barbon - I segni dei mercanti a Venezia nel fon- daco dei tedeschi . » 103 Giuliano Simionato - Influssi musicali della poesia pascoliana . » 123 Antonio Chiades - Il mondo negli occhi di lei. Un itinerario poetico fra luoghi confini e occasioni . » 135 Ciro Perusini - L’urbanistica nel Veneto nell’ultimo mezzo se- colo . » 149 Maurizio Gallucci - La qualità della vita nella terza età a Treviso, tipica città del Nord-Est d’Italia. Evidenze dello studio “Treviso longeva” . -
The Early Years of Quantum Monte Carlo (2): Finite- Temperature Simulations
The Early Years of Quantum Monte Carlo (2): Finite- Temperature Simulations Michel Mareschal1,2, Physics Department, ULB , Bruxelles, Belgium Introduction This is the second part of the historical survey of the development of the use of random numbers to solve quantum mechanical problems in computational physics and chemistry. In the first part, noted as QMC1, we reported on the development of various methods which allowed to project trial wave functions onto the ground state of a many-body system. The generic name for all those techniques is Projection Monte Carlo: they are also known by more explicit names like Variational Monte Carlo (VMC), Green Function Monte Carlo (GFMC) or Diffusion Monte Carlo (DMC). Their different names obviously refer to the peculiar technique used but they share the common feature of solving a quantum many-body problem at zero temperature, i.e. computing the ground state wave function. In this second part, we will report on the technique known as Path Integral Monte Carlo (PIMC) and which extends Quantum Monte Carlo to problems with finite (i.e. non-zero) temperature. The technique is based on Feynman’s theory of liquid Helium and in particular his qualitative explanation of superfluidity [Feynman,1953]. To elaborate his theory, Feynman used a formalism he had himself developed a few years earlier: the space-time approach to quantum mechanics [Feynman,1948] was based on his thesis work made at Princeton under John Wheeler before joining the Manhattan’s project. Feynman’s Path Integral formalism can be cast into a form well adapted for computer simulation. In particular it transforms propagators in imaginary time into Boltzmann weight factors, allowing the use of Monte Carlo sampling. -
Path Integrals Calculations of Helium Droplets
Imaginary Time Path Integral Calculations of Supersolid Helium David Ceperley Dept. of Physics and NCSA University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA In 1953 Feynman, introduced imaginary-time path integrals to understand superfluid 4He. Path integrals are an exact "isomorphism" between quantum systems and the classical statistical mechanics of ring "polymers" allowing one to understand Bose condensation from the point of view of classical statistical mechanics and to calculate many of its properties. Bose symmetry of the wave function implies that the polymers are allowed to “cross-link'' or exchange. Superfluidity (coupling to the boundaries) is proportional to the mean squared flux of polymers through a surface. Bose condensation is equivalent to the delocalization of the end-end distance of a cut polymer. We have developed specialized simulation methods (Path Integral Monte Carlo) based on the Metropolis Monte Carlo method, to simulate boson systems[1]. Andreev, Lifshitz, Chester, and Leggett suggested in about 1970 that a quantum crystal such as bulk helium-4 under pressure might show both crystallinity and superfluid behavior. Experiments by Kim and Chan within the last two years have found indications for such a supersolid phase. The theoretical explanation of superflow in a crystal assumed vacancies, however, they have not been seen experimentally and computer simulations do not find stable vacancies. The path integral picture allows one to address the question[2] of whether a highly fluctuating quantum crystal is “insulating” or “metallic”. We and others have done Path Integral Monte Carlo calculations of exchange frequencies[3], superfluid density and the condensate fraction[4]. -
John Bardeen
From the collections of the Seeley G. Mudd Manuscript Library, Princeton, NJ These documents can only be used for educational and research purposes (“Fair use”) as per U.S. Copyright law (text below). By accessing this file, all users agree that their use falls within fair use as defined by the copyright law. They further agree to request permission of the Princeton University Library (and pay any fees, if applicable) if they plan to publish, broadcast, or otherwise disseminate this material. This includes all forms of electronic distribution. Inquiries about this material can be directed to: Seeley G. Mudd Manuscript Library 65 Olden Street Princeton, NJ 08540 609-258-6345 609-258-3385 (fax) [email protected] U.S. Copyright law test The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or other reproduction is not to be “used for any purpose other than private study, scholarship or research.” If a user makes a request for, or later uses, a photocopy or other reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement. \ The Princeton Mathematics Community in the 1930s Transcript Number 1 (PMC1} © The Trustees of Princeton University, 1985 JOHN BARDEEN This is an interview on 29 May 1984 with John Bardeen at the University of Illinois. The interviewer is William A spray. -
María Goeppert Mayer: De Gotinga a Premio Nobel De Física
José Manuel Sánchez Ron José Manuel Sánchez Ron María Goeppert Mayer: de Gotinga a Premio María Goeppert Mayer: Nobel de Física de Gotinga a Premio María Goeppert Mayer (1906-1972) fue una de las cuatro José Manuel Sánchez Ron se Nobel de Física mujeres que, hasta la fecha, han obtenido el Premio Nobel licenció en Física en la Universidad de Física: Marie Curie (1903), María Goeppert Mayer Complutense de Madrid y doctoró en la Universidad de Londres. (1963), Donna Strickland (2018) y Andrea Ghez (2020). Desde 2019 es catedrático emérito Insertando su biografía y contribuciones en el contexto de de Historia de la Ciencia en la los mundos científico y nacional en los que vivió (Alemania Universidad Autónoma de Madrid, y Estados Unidos), el catedrático emérito de Historia de la donde antes de obtener esa cátedra en 1994 fue profesor titular Ciencia en la Universidad Autónoma de Madrid y miembro de Física Teórica. Es autor de de la Real Academia Española, José Manuel Sánchez Ron, numerosas e influyentes obras de reconstruye en este libro los avatares de su carrera, que la historia de la ciencia internacional llevó de la Universidad de Gotinga a la de California en San y española. En 2015 recibió el Diego, pasando por Johns Hopkins, Columbia y Chicago. Premio Nacional de Ensayo por El mundo después de la revolución. Dotada especialmente para la física teórica, sin embargo las La física de la segunda mitad del “circunstancias” de su vida no le permitieron desarrollar un siglo xx, el primer Premio Nacional programa de investigación con cierta coherencia y continuidad. -
Photoinduced Multistage Phase Transitions in Ta2nise5
Photoinduced multistage phase transitions in Ta2NiSe5 ‡ 1 ‡ 1,2 ‡ 3 1 1 1 Q. M. Liu , D.Wu ∗ , Z. A. Li , L. Y. Shi, Z. X. Wang, S. J. Zhang, 1 1 3 3 1 1, 4 T. Lin, T. C. Hu, H. F. Tian, J. Q. Li, T. Dong, and N. L. Wang∗ 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 2 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4 Collaborative Innovation Center of Quantum Matter, Beijing, China Abstract: Utrafast control of material physical properties represents a rapid developing field in con- densed matter physics. Yet, accessing to the long-lived photoinduced electronic states is still in its early stage, especially with respect to an insulator to metal phase transition. Here, by combing transport mea- surement with ultrashort photoexcitation and coherent phonon spectroscopy, we report on photoinduced multistage phase transitions in Ta2NiSe5. Upon excitation by weak pulse intensity, the system is triggered to a short-lived state accompanied by a structural change. Further increasing the excitation intensity beyond a threshold, a photoinduced steady new state is achieved where the resistivity drops by more than four orders at temperature 50 K. This new state is thermally stable up to at least 350 K and exhibits the lattice structure different from any of the thermally accessible equilibrium states. Transmission electron microscopy reveals an in-chain Ta atom displacement in the photoinduced new structure phase. We also found that nano-sheet samples with the thickness less than the optical penetration depth are required for attaining a complete transition. -
Variational Density Matrix Method for Warm Condensed Matter And
Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen Burkhard Militzera) and E. L. Pollockb) a)Department of Physics University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 b)Physics Department, Lawrence Livermore National Laboratory, University of California, Livermore, California 94550 (August 8, 2018) A new variational principle for optimizing thermal density matrices is intro- duced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaus- sians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented. I. INTRODUCTION Considerable effort has been devoted to systems where finite temperature ions (treated either classically or quantum mechanically by path integral methods) are coupled to degenerate electrons on the Born-Oppenheimer surface. In contrast, the theory for similar systems with non-degenerate electrons (T a significant fraction of TF ermi) is relatively underdeveloped except at the extreme high T limit where Thomas-Fermi and similar theories apply. In this paper we present a computational approach for systems with non-degenerate electrons analogous to the methods used for ground state many body computations. Although an oversimplification, we may usefully view the ground state computations as consisting of three levels of increasing accuracy [1]. At the first level, the ground state wave function consists of determinants, for both spin species, of single particle orbitals often taken from local density functional theory Φ1(r1) .. -
2014 Blue Waters Update
2014 Blue Waters Update Bill Kramer Blue Waters Director Announcements • Today, Ed Seidel has invited the PIs to lunch in the Alma Mater Room. • The PI's have blue tickets in the back of their badges. • We will take a group photo of all attendees at the first break. • #BWsymp2014 for another chance BW Symposium - May 2014 2 Joint Dinner at Memorial Stadium – Tonight Joint with the Private Sector Program Workshop Attendees BW Symposium - May 2014 3 SETAC NSF PRAC • Paul Woodward, Physics and Astrophysics, University of Minnesota • Tom Cheatham, Chemistry, University of Utah • Patrick Reed, Civil and Environmental Engineering – Systems Optimization, Cornell • Klaus Schulten, Physics and Molecular Dynamic, University of Illinois Urbana-Champaign • David Ceperley, Physics and Material Science, University of Illinois Urbana-Champaign • Tiziana Di Matteo, Physics and Cosmology, Carnegie Mellon University • Dave Randall, Atmospheric Sciences and Climate Colorado State University GLCPC Chair • Joe Paris, Academic & Research Technologies in Information Technology, Northwestern University (Chair for 2013/2014, followed by Jorge Vinals, Structural Mechanics and Biophysics, University of Minnesota, Chair for 2014/2015) University of Illinois at Urbana-Champaign Allocation Chair • Athol Kemball, Atmospheric Sciences, University of Illinois at Urbana-Champaign Industry • Rick Authur, General Electric Global Research, Computer and Software Engineering BW Symposium - May 2014 4 Blue Waters Fellows • 6 Awards (so far) • Substantial Stipend + Blue Waters allocations • 10 other very deserving nominees are being offered Blue Waters allocations • Kenza Arraki, New Mexico State University • Jon Calhoun, University of Illinois at Urbana-Champaign • Sara Kokkila, Stanford University, • Edwin Mathews, University of Notre Dame • Ariana Minot, Harvard University • Derek Vigil-Fowler, University of California, Berkeley BW Symposium - May 2014 5 Blue Waters Usage 2/11/14 – Largest 10 Jobs-Torus View Each dot is a Gemini router and represents 64 AMD integer cores.