In-Hive Variation of the Gut Microbial Composition of Honey Bee Larvae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Taxonomic Note on the Genus Lactobacillus
Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept. -
Isolation and Characterization of Phages Active Against Paenibacillus Larvae Causing American Foulbrood in Honeybees in Poland
viruses Article Isolation and Characterization of Phages Active against Paenibacillus larvae Causing American Foulbrood in Honeybees in Poland Ewa Jo ´nczyk-Matysiak 1,* , Barbara Owczarek 1, Ewa Popiela 2, Kinga Switała-Jele´ ´n 3, Paweł Migdał 2 , Martyna Cie´slik 1 , Norbert Łodej 1, Dominika Kula 1, Joanna Neuberg 1, Katarzyna Hodyra-Stefaniak 3, Marta Kaszowska 4, Filip Orwat 1, Natalia Bagi ´nska 1 , Anna Mucha 5 , Agnieszka Belter 6,7 , Mirosława Skupi ´nska 6, Barbara Bubak 1, Wojciech Fortuna 8,9, Sławomir Letkiewicz 9,10, Paweł Chorbi ´nski 11, Beata Weber-D ˛abrowska 1,9, Adam Roman 2 and Andrzej Górski 1,9,12 1 Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl Street 12, 53-114 Wroclaw, Poland; [email protected] (B.O.); [email protected] (M.C.); [email protected] (N.Ł.); [email protected] (D.K.); [email protected] (J.N.); fi[email protected] (F.O.); [email protected] (N.B.); [email protected] (B.B.); [email protected] (B.W.-D.); [email protected] (A.G.) 2 Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmo´nskiegoStreet 38C, 51-630 Wroclaw, Poland; [email protected] (E.P.); [email protected] (P.M.); [email protected] (A.R.) 3 Pure Biologics, Du´nskaStreet 11, 54-427 Wroclaw, Poland; [email protected] (K.S.-J.);´ Citation: Jo´nczyk-Matysiak,E.; [email protected] (K.H.-S.) 4 Owczarek, B.; Popiela, E.; Laboratory of Microbial Immunochemistry and Vaccines, Ludwik Hirszfeld Institute of Immunology and Switała-Jele´n,K.;´ Migdał, P.; Cie´slik, Experimental Therapy, Polish Academy of Sciences, 54-427 Wrocław, Poland; [email protected] 5 ˙ M.; Łodej, N.; Kula, D.; Neuberg, J.; Department of Genetics, Wrocław University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland; [email protected] Hodyra-Stefaniak, K.; et al. -
Tetragonula Carbonaria and Disease: Behavioural and Antimicrobial Defences Used by Colonies to Limit Brood Pathogens
Tetragonula carbonaria and disease: Behavioural and antimicrobial defences used by colonies to limit brood pathogens Jenny Lee Shanks BHort, BSc (Hons) Submitted in fulfilment of requirements for the degree Doctor of Philosophy Submitted to the School of Science and Health University of Western Sydney, Hawkesbury Campus July, 2015 Our treasure lies in the beehive of our knowledge. We are perpetually on the way thither, being by nature winged insects and honey gatherers of the mind. Friedrich Nietzsche (1844 – 1900) i Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, whether in full or in part, for a degree at this or any other institution ……………………………………………………………………. Jenny Shanks July 2015 ii Acknowledgements First and foremost, I am extremely indebted to my supervisors, Associate Professor Robert Spooner-Hart, Dr Tony Haigh and Associate Professor Markus Riegler. Their guidance, support and encouragement throughout this entire journey, has provided me with many wonderful and unique opportunities to learn and develop as a person and a researcher. I thank you all for having an open door, lending an ear, and having a stack of tissues handy. I am truly grateful and appreciate Roberts’s time and commitment into my thesis and me. I am privileged I had the opportunity to work alongside someone with a wealth of knowledge and experience. Robert’s passion and enthusiasm has created some lasting memories, and certainly has encouraged me to continue pursuing my own desires. -
Anti-Virulence Strategy Against the Honey Bee Pathogenic Bacterium Paenibacillus Larvae Via Small Molecule Inhibitors of the Bacterial Toxin Plx2a
toxins Article Anti-Virulence Strategy against the Honey Bee Pathogenic Bacterium Paenibacillus larvae via Small Molecule Inhibitors of the Bacterial Toxin Plx2A Julia Ebeling 1 , Franziska Pieper 1, Josefine Göbel 1 , Henriette Knispel 1, Michael McCarthy 2, Monica Goncalves 2, Madison Turner 2, Allan Rod Merrill 2 and Elke Genersch 1,3,* 1 Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540 Hohen Neuendorf, Germany; [email protected] (J.E.); [email protected] (F.P.); josefi[email protected] (J.G.); [email protected] (H.K.) 2 Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected] (M.M.); [email protected] (M.G.); [email protected] (M.T.); [email protected] (A.R.M.) 3 Institute of Microbiology and Epizootics, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany * Correspondence: [email protected] or [email protected] Abstract: American Foulbrood, caused by Paenibacillus larvae, is the most devastating bacterial honey bee brood disease. Finding a treatment against American Foulbrood would be a huge breakthrough in the battle against the disease. Recently, small molecule inhibitors against virulence factors have been suggested as candidates for the development of anti-virulence strategies against bacterial infections. We therefore screened an in-house library of synthetic small molecules and a library of flavonoid natural products, identifying the synthetic compound M3 and two natural, plant-derived Citation: Ebeling, J.; Pieper, F.; small molecules, Acacetin and Baicalein, as putative inhibitors of the recently identified P. -
The Buzz About ADP-Ribosylation Toxins from Paenibacillus Larvae, the Causative Agent of American Foulbrood in Honey Bees
toxins Review The Buzz about ADP-Ribosylation Toxins from Paenibacillus larvae, the Causative Agent of American Foulbrood in Honey Bees Julia Ebeling 1 , Anne Fünfhaus 1 and Elke Genersch 1,2,* 1 Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540 Hohen Neuendorf, Germany; [email protected] (J.E.); [email protected] (A.F.) 2 Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany * Correspondence: [email protected]; Tel.: +49-3303-293833 Abstract: The Gram-positive, spore-forming bacterium Paenibacillus larvae is the etiological agent of American Foulbrood, a highly contagious and often fatal honey bee brood disease. The species P. lar- vae comprises five so-called ERIC-genotypes which differ in virulence and pathogenesis strategies. In the past two decades, the identification and characterization of several P. larvae virulence factors have led to considerable progress in understanding the molecular basis of pathogen-host-interactions during P. larvae infections. Among these virulence factors are three ADP-ribosylating AB-toxins, Plx1, Plx2, and C3larvin. Plx1 is a phage-born toxin highly homologous to the pierisin-like AB-toxins expressed by the whites-and-yellows family Pieridae (Lepidoptera, Insecta) and to scabin expressed by the plant pathogen Streptomyces scabiei. These toxins ADP-ribosylate DNA and thus induce apoptosis. While the presumed cellular target of Plx1 still awaits final experimental proof, the classification of the A subunits of the binary AB-toxins Plx2 and C3larvin as typical C3-like toxins, which ADP-ribosylate Rho-proteins, has been confirmed experimentally. -
Paenibacillaceae Cover
The Family Paenibacillaceae Strain Catalog and Reference • BGSC • Daniel R. Zeigler, Director The Family Paenibacillaceae Bacillus Genetic Stock Center Catalog of Strains Part 5 Daniel R. Zeigler, Ph.D. BGSC Director © 2013 Daniel R. Zeigler Bacillus Genetic Stock Center 484 West Twelfth Avenue Biological Sciences 556 Columbus OH 43210 USA www.bgsc.org The Bacillus Genetic Stock Center is supported in part by a grant from the National Sciences Foundation, Award Number: DBI-1349029 The author disclaims any conflict of interest. Description or mention of instrumentation, software, or other products in this book does not imply endorsement by the author or by the Ohio State University. Cover: Paenibacillus dendritiformus colony pattern formation. Color added for effect. Image courtesy of Eshel Ben Jacob. TABLE OF CONTENTS Table of Contents .......................................................................................................................................................... 1 Welcome to the Bacillus Genetic Stock Center ............................................................................................................. 2 What is the Bacillus Genetic Stock Center? ............................................................................................................... 2 What kinds of cultures are available from the BGSC? ............................................................................................... 2 What you can do to help the BGSC ........................................................................................................................... -
Screening of Antagonistic Bacterial Isolates from Hives of Apis Cerana in Vietnam Against the Causal Agent of American Foulbrood
1202 Chiang Mai J. Sci. 2018; 45(3) Chiang Mai J. Sci. 2018; 45(3) : 1202-1213 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Screening of Antagonistic Bacterial Isolates from Hives of Apis cerana in Vietnam Against the Causal Agent of American Foulbrood of Honey Bees, Paenibacillus larvae Sasiprapa Krongdang [a,b], Jeffery S. Pettis [c], Geoffrey R. Williams [d] and Panuwan Chantawannakul* [a,e,f] [a] Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. [b] Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand. [c] USDA-ARS, Bee Research Laboratory, Beltsville, MD, 20705, USA. [d] Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, 36849, USA. [e] Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. [f] International College of Digital Innovation, Chiang Mai University, 50200, Thailand. * Author for correspondence; e-mail: [email protected] Received: 15 February 2017 Accepted: 20 June 2017 ABSTRACT American foulbrood (AFB) is a virulent disease of honey bee brood caused by the Gram-positive, spore-forming bacterium; Paenibacillus larvae. In this study, we determined the potential of bacteria isolated from hives of Asian honey bees (Apis cerana) to act antagonistically against P. larvae. Isolates were sampled from different locations on the fronts of A. cerana hives in Vietnam. A total of 69 isolates were obtained through a culture-dependent method and 16S rRNA gene sequencing showed affiliation to the phyla Firmicutes and Actinobacteria. Out of 69 isolates, 15 showed strong inhibitory activity against P. -
Efficacy of Chlorine Dioxide Fumigation on the Spores Of
EFFICACY OF CHLORINE DIOXIDE FUMIGATION ON THE SPORES OF PAENIBACILLUS LARVAE, THE CAUSATIVE AGENT OF AMERICAN FOULBROOD DISEASE IN HONEYBEES A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Osama Salih Mahdi In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Microbiological Sciences August 2019 Fargo, North Dakota North Dakota State University Graduate School Title EFFICACY OF CHLORINE DIOXIDE FUMIGATION ON THE SPORES OF PAENIBACILLUS LARVAE, THE CAUSATIVE AGENT OF AMERICAN FOULBROOD DISEASE IN HONEYBEES By Osama Salih Mahdi The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. John McEvoy Chair Dr. Teresa Bergholz Dr. Birgit Pruess Dr. Kendra Greenlee Approved: October 2, 2019 Dr. John McEvoy Date Department Chair ABSTRACT Honeybees (Apis mellifera) play a critical role in agricultural pollination. However, their health and numbers are in decline. A major cause of this decline is bacterial diseases, of which American foulbrood disease (AFB) is particularly important and troubling. Since the causative agent, Paenibacillus larvae, is spore forming, it can resist antibiotics, many disinfectants, and environmental stresses. We provide protocols and methods for the growth, maintenance, sporulation, and germination of P. larvae. Also, this study investigates the sporicidal activity of ClO2 on P. larvae spores. The gas efficacy depends on treatment time and gas level. The effective level was 645- 811 ng/ml ClO2 for 30 min, 191-198 ng/ml for 1 hour, 21-18 ng/ml for 2 h and 7-16 ng/ml ClO2 for 4 h. -
Molecular Diagnosis and Characterization of Honey Bee Pathogens
Molecular Diagnosis and Characterization of Honey Bee Pathogens Eva Forsgren Faculty of Natural Resources and Agricultural Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2009 Acta Universitatis Agriculturae Sueciae 2009:79 Cover: Honey bee with symptoms of deformed wing virus infection (Photo: Vitezslav Manak) ISSN 1652-6880 ISBN 978-91-576-7426-5 © 2009 Eva Forsgren, Uppsala Print: SLU Service/Repro, Uppsala 2009 Molecular Diagnosis and Characterization of Honey Bee Pathogens Abstract Bees are crucial for maintaining biodiversity by pollination of numerous plant species. The European honey bee, Apis mellifera, is of great importance not only for the honey they produce, but also as vital pollinators of agricultural and horticultural crops. The economical value of pollination has been estimated to be several billion dollars, and pollinator declines are a global biodiversity threat. Hence, honey bee health has great impact on the economy, food production and biodiversity worldwide. A broad spectrum of specific pathogens affect the honey bee colony including bacteria, viruses, microscopic fungi, and internal and external parasites. Some of these microorganisms and parasites are more harmful than others and infections/infestations may lead to colony collapse. Knowledge of the biology and epidemiology of these pathogens are needed for prevention of disease outbreak. The use of molecular methods has increased during recent years offering a selection of powerful tools for laboratories involved in honey bee disease diagnostics and research. Novel diagnostic techniques also allow for new approaches to honey bee pathology where specific and critical questions can be answered using modern molecular technology. This thesis focuses on molecular techniques and their application within honey bee pathology. -
Isolation and Characterization of European Foulbrood Antagonistic Bacteria from the Gastrointestine of the Japanese Honeybee Apis Cerana Japonica
Isolation and Characterization of European Foulbrood Antagonistic Bacteria from the Gastrointestine of the Japanese Honeybee Apis cerana japonica 著者 呉 梅花 内容記述 この博士論文は一部が非公開になっています year 2013 学位授与大学 筑波大学 (University of Tsukuba) 学位授与年度 2013 報告番号 12102甲第6707号 URL http://hdl.handle.net/2241/00122071 Isolation and Characterization of European Foulbrood Antagonistic Bacteria from the Gastrointestine of the Japanese Honeybee Apis cerana japonica April 2013 Meihua WU Isolation and Characterization of European Foulbrood Antagonistic Bacteria from the Gastrointestine of the Japanese Honeybee Apis cerana japonica A Dissertation Submitted to the Graduate School of Life and Environmental Science, the University of Tsukuba in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Agricultural Science (Doctoral Program in Biosphere Resource Science and Technology) Meihua WU Summary Bacteria were isolated from the digestive tract of the Japanese honeybee using a culture-dependent method to investigate antagonistic effects of honeybee intestinal bacteria. Forty-five bacterial strains belonging to nine genera, Bifidobacterium, Lactobacillus, Bacillus, Streptomyces, Pantoea, Stenotrophomonas, Paenibacillus, Lysinibacillus and Staphylococcus were obtained in this study. Among these, 11 strains were closely related to bifidobacteria previously isolated from the European honeybee A. mellifera, which are distinct from bumblebee gastrointestinal bifidobacteria. On the other hand, 17 strains were identified as lactobacilli, another important lactic acid bacteria. According to the results of 16S rRNA gene sequence similarity and phylogenetic analysis, some lactobacilli strains are likely novel species. In addition, lactobacilli obtained in this study were similar to lactobacilli associated with Apis species but distant from those of bumblebees, implying that honeybee species share some Apis species-specific bacteria in their gut bacterial communities. -
Survey and Molecular Detection of Melissococcus Plutonius, the Causative Agent of European Foulbrood in Honeybees in Saudi Arabia
Saudi Journal of Biological Sciences (2017) 24, 1327–1335 King Saud University Saudi Journal of Biological Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Survey and molecular detection of Melissococcus plutonius, the causative agent of European Foulbrood in honeybees in Saudi Arabia Mohammad Javed Ansari a,*, Ahmad Al-Ghamdi a, Adgaba Nuru a, Ashraf Mohamed Ahmed b, Tahany H. Ayaad b, Abdulaziz Al-Qarni c, Yehya Alattal a, Noori Al-Waili d a Bee Research Chair, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia b Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia c Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia d Institute for Wound Care and Hyperbaric Medicine, NewYork-Presbyterian/Hudson Valley Hospital, USA Received 12 May 2016; revised 5 October 2016; accepted 9 October 2016 Available online 28 October 2016 KEYWORDS Abstract A large-scale field survey was conducted to screen major Saudi Arabian beekeeping loca- Honeybee; tions for infection by Melissococcus plutonius. M. plutonius is one of the major bacterial pathogens Molecular detection; of honeybee broods and is the causative agent of European Foulbrood disease (EFB). Larvae from Melissococcus plutonius; samples suspected of infection were collected from different apiaries and homogenized in phosphate Saudi Arabia buffered saline (PBS). Bacteria were isolated on MYPGP agar medium. Two bacterial isolates, ksuMP7 and ksuMP9 (16S rRNA GenBank accession numbers, KX417565 and KX417566, respec- tively), were subjected to molecular identification using M. -
Microbiological Research Inhibition of Paenibacillus Larvae by An
Microbiological Research 227 (2019) 126303 Contents lists available at ScienceDirect Microbiological Research journal homepage: www.elsevier.com/locate/micres Inhibition of Paenibacillus larvae by an extracellular protein fraction from a honeybee-borne Brevibacillus laterosporus strain T ⁎ Maria Giovanna Marche, Alberto Satta, Ignazio Floris, Anna Marta Lazzeri, Luca Ruiu Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100, Sassari, Italy ARTICLE INFO ABSTRACT Keywords: The inhibitory action that a Brevibacillus laterosporus strain isolated from the honeybee body causes against the Apis mellifera American Foulbrood (AFB) etiological agent Paenibacillus larvae was studied by in-vitro experiments. A protein American foulbrood fraction isolated from B. laterosporus culture supernatant was involved in the observed inhibition of P. larvae Laterosporulin vegetative growth and spore germination. As a result of LC–MS/MS proteomic analyses, the bacteriocin later- Antimicrobial osporulin was found to be the major component of this fraction, followed by other antimicrobial proteins and Bacteria substances including lectins, chaperonins, various enzymes and a number of putative uncharacterized proteins. The results obtained in this study highlight the potential of B. laterosporus as a biological control agent for preserving and improving honeybee health. 1. Introduction probably by the action of proteases and chitinases (Garcia-Gonzalez et al., 2014), bacterial cells interact with the midgut epithelial cells A variety of bacterial