Epicuticular Compounds of Protopiophila Litigata (Diptera: Piophilidae): Identification And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Terrestrial Insects and Climate Change: Adaptive Responses in Key Traits
Physiological Entomology (2019), DOI: 10.1111/phen.12282 Terrestrial insects and climate change: adaptive responses in key traits VANESSA KELLERMANN andBELINDA VAN HEERWAARDEN School of Biological Sciences, Monash University, Melbourne, Victoria, Australia Abstract. Understanding and predicting how adaptation will contribute to species’ resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health-related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait-based models suggest that low- to mid-latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species’ distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. -
The Discovery, Distribution and Diversity of DNA Viruses Associated with Drosophila Melanogaster in Europe
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342956; this version posted March 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: The discovery, distribution and diversity of DNA viruses associated with Drosophila melanogaster in Europe Running title: DNA viruses of European Drosophila Key Words: DNA virus, Endogenous viral element, Drosophila, Nudivirus, Galbut virus, Filamentous virus, Adintovirus, Densovirus, Bidnavirus Authors: Megan A. Wallace 1,2 [email protected] 0000-0001-5367-420X Kelsey A. Coffman 3 [email protected] 0000-0002-7609-6286 Clément Gilbert 1,4 [email protected] 0000-0002-2131-7467 Sanjana Ravindran 2 [email protected] 0000-0003-0996-0262 Gregory F. Albery 5 [email protected] 0000-0001-6260-2662 Jessica Abbott 1,6 [email protected] 0000-0002-8743-2089 Eliza Argyridou 1,7 [email protected] 0000-0002-6890-4642 Paola Bellosta 1,8,9 [email protected] 0000-0003-1913-5661 Andrea J. Betancourt 1,10 [email protected] 0000-0001-9351-1413 Hervé Colinet 1,11 [email protected] 0000-0002-8806-3107 Katarina Eric 1,12 [email protected] 0000-0002-3456-2576 Amanda Glaser-Schmitt 1,7 [email protected] 0000-0002-1322-1000 Sonja Grath 1,7 [email protected] 0000-0003-3621-736X Mihailo Jelic 1,13 [email protected] 0000-0002-1637-0933 Maaria Kankare 1,14 [email protected] 0000-0003-1541-9050 Iryna Kozeretska 1,15 [email protected] 0000-0002-6485-1408 Volker Loeschcke 1,16 [email protected] 0000-0003-1450-0754 Catherine Montchamp-Moreau 1,4 [email protected] 0000-0002-5044-9709 Lino Ometto 1,17 [email protected] 0000-0002-2679-625X Banu Sebnem Onder 1,18 [email protected] 0000-0002-3003-248X Dorcas J. -
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Catarina Barros De Prado E Castro Tese Orientada P
UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SEASONAL CARRION DIPTERA AND COLEOPTERA COMMUNITIES FROM LISBON (PORTUGAL) AND THE UTILITY OF FORENSIC ENTOMOLOGY IN LEGAL MEDICINE Catarina Barros de Prado e Castro Tese orientada por: Professor Doutor Artur Raposo Moniz Serrano Professora Doutora María Dolores García García DOUTORAMENTO EM BIOLOGIA (Ecologia) 2011 This study was supported by the Fundação para a Ciência e Tecnologia. PhD Scholarship: SFRH/BD/23066/2005 ________________________________________________________________________ This dissertation should be cited as: Prado e Castro, C. (2011) Seasonal carrion Diptera and Coleoptera communities from Lisbon (Portugal) and the utility of Forensic Entomology in Legal Medicine. PhD Thesis, University of Lisbon, Portugal Nota Prévia Na elaboração da presente dissertação, e nos termos do nº 1 do Artigo 40, Capítulo V, do Regulamento de Estudos Pós-Graduados da Universidade de Lisboa, publicado no Diário da República – II Série Nº 153, de 5 de Julho de 2003, esclarece-se que foram integrados 5 artigos científicos já publicados em revistas internacionais com arbitragem, não indexadas, 2 artigos submetidos em revistas internacionais indexadas, bem como 1 manuscrito ainda em fase de preparação, os quais integram os capítulos da presente tese. Tendo os referidos trabalhos sido realizados em colaboração com outros investigadores, a candidata esclarece que participou integralmente no planeamento, na recolha, análise e discussão dos resultados e na elaboração de -
THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975
NATIONAL ACADEMY OF SCIENCES T H E O D O S I U S D O B ZHANSKY 1900—1975 A Biographical Memoir by F R A N C I S C O J . A Y A L A Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1985 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975 BY FRANCISCO J. AYALA HEODOSIUS DOBZHANSKY was born on January 25, 1900 Tin Nemirov, a small town 200 kilometers southeast of Kiev in the Ukraine. He was the only child of Sophia Voinarsky and Grigory Dobrzhansky (precise transliteration of the Russian family name includes the letter "r"), a teacher of high school mathematics. In 1910 the family moved to the outskirts of Kiev, where Dobzhansky lived through the tumultuous years of World War I and the Bolshevik revolu- tion. These were years when the family was at times beset by various privations, including hunger. In his unpublished autobiographical Reminiscences for the Oral History Project of Columbia University, Dobzhansky states that his decision to become a biologist was made around 1912. Through his early high school (Gymnasium) years, Dobzhansky became an avid butterfly collector. A schoolteacher gave him access to a microscope that Dob- zhansky used, particularly during the long winter months. In the winter of 1915—1916, he met Victor Luchnik, a twenty- five-year-old college dropout, who was a dedicated entomol- ogist specializing in Coccinellidae beetles. -
03 Misiachna & Korneyev 2 04 2015.Indd
Vestnik zoologii, 49(2): 113–118, 2015 DOI 10.1515/vzoo-2015-0012 UDC 595.773.4 THE FIRST RECORDS OF THE SKIPPER FLIES (DIPTERA, PIOPHILIDAE) FROM UKRAINE A. V. Misiachna1,3, V. A. Korneyev2 1Taras Shevchenko National University of Kyiv, Volodymyrska str., 60, Kyiv, 01033 Ukraine E-mail: [email protected] 2,1Schmalhausen Institute of Zoology, NAS of Ukraine vul. B. Khmelnytskogo, 15, Kiev, 01601 Ukraine E-mail: [email protected] 3Corresponding author Th e First Records of the Skipper Flies (Diptera, Piophilidae) from Ukraine. Misiachna, A. V., Korneyev, V. A. — Eight species of the family Piophilidae are found in the mainland Ukraine. Five of them, Allopiophila luteata (Haliday, 1833), Parapiophila vulgaris (Fallén, 1820), Protopiophila latipes (Meigen, 1838), Stearibia nigriceps (Meigen, 1826), and Neottiophilum praeustum (Meigen, 1826), are recorded from the fi rst time from Ukraine. Two species, Mycetaulus bipunctatus (Fallén, 1823) and Prochyliza nigrimana (Meigen, 1826), have been previously recorded only from Crimea. Key words: Diptera, Piophilidae, Ukraine, fi rst records. Первые находки сырных мух, или прыгунов (Diptera, Piophilidae) из Украины. Мисячна А. В., Корнеев В. А. — На материковой части Украины было найдено восемь видов из семейства Piophilidae, пять из которых: Allopiophila luteata (Haliday, 1833), Parapiophila vulgaris (Fallén, 1820), Protopiophila latipes (Meigen, 1838), Stearibia nigriceps (Meigen, 1826) и Neottiophilum praeustum (Meigen, 1826), — впервые отмечены в Украине. Два вида, Mycetaulus bipunctatus (Fallén, 1823) и Prochyliza nigrimana (Meigen, 1826), ранее были отмечены только из Крыма. Ключевые слова: Diptera, Piophilidae, Украина, первые находки. Introduction Piophilidae are a small family of the acalyptrates (Diptera Cyclorrhapha) usually assigned to the superfamily Tephritoidea and including about 80 species worldwide (McAlpine, 1977; Ozerov, Norrbom, 2010) and 29 species in Europe (Ozerov, 2013). -
The Evolution of Sex-Biased Gene Expression in Drosophila Serrata
The evolution of sex-biased gene expression in Drosophila serrata Scott Lee Allen B.Sc. Hons (2008) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Biological Sciences Abstract Sexual reproduction is an ancient biological process and in most species, has resulted in the evolution of two distinct sexes; females that are typically categorised as producing relatively large and metabolically costly gametes, and males that produce smaller less costly gametes. Such differences between the sexes can result in discordant selection pressures where, for example, males are selected for a fast mating rate, whereas it is beneficial for females to reproduce less often. Because the sexes share a genome, such discordant selection can create an intralocus sexual conflict, where an allele can be simultaneously beneficial in one sex while being detrimental in the other. Ultimately, the resolution of intralocus sexual conflict occurs via the evolution of sexual dimorphism, which allows each sex to approach its individual fitness optimum. A prime mechanism for the evolution of sexual dimorphism is sex-biased gene expression, where males and females express the shared genome differently to produce distinct phenotypes. Sex-biased gene expression (SBGE) appears to be a common feature of dioecious species and during my PhD candidature, I studied the following aspects of the evolution of SBGE in the Australian vinegar fly Drosophila serrata. 1) A deficit of male-biased X-linked genes has been observed in several other species. I assessed the possibility that such a nonrandom distribution of sex-biased genes in D. -
1 a Genomic Reference Panel for Drosophila Serrata 1 2 3 Adam J
G3: Genes|Genomes|Genetics Early Online, published on March 1, 2018 as doi:10.1534/g3.117.300487 1 A Genomic Reference Panel for Drosophila serrata 2 3 4 Adam J. Reddiex1, Scott, L. Allen1, Stephen F. Chenoweth1* 5 6 7 1. School of Biological Sciences, The University of Queensland, QLD 4072, 8 Australia. 9 10 * correspondence: [email protected] 11 12 13 14 15 Keywords: montium, gwas, population genetics, quantitative genetics, multi- 16 parental population 17 1 © The Author(s) 2013. Published by the Genetics Society of America. 18 19 Abstract 20 21 Here we describe a collection of re-sequenced inbred lines of Drosophila 22 serrata, sampled from a natural population situated deep within the species 23 endemic distribution in Brisbane, Australia. D. serrata is a member of the 24 speciose montium group whose members inhabit much of south east Asia and 25 has been well studied for aspects of climatic adaptation, sexual selection, sexual 26 dimorphism, and mate recognition. We sequenced 110 lines that were inbred via 27 17-20 generations of full-sib mating at an average coverage of 23.5x with paired- 28 end Illumina reads. 15,228,692 biallelic SNPs passed quality control after being 29 called using the Joint Genotyper for Inbred Lines (JGIL). Inbreeding was highly 30 effective and the average levels of residual heterozygosity (0.86%) were well 31 below theoretical expectations. As expected, linkage disequilibrium decayed 32 rapidly, with r2 dropping below 0.1 within 100 base pairs. With the exception of 33 four closely related pairs of lines which may have been due to technical errors, 34 there was no statistical support for population substructure. -
Mechanisms of Speciation
International Journal of Evolutionary Biology Mechanisms of Speciation Guest Editors: Kyoichi Sawamura, Chau-Ti Ting, Artyom Kopp, and Leonie C. Moyle Mechanisms of Speciation International Journal of Evolutionary Biology Mechanisms of Speciation Guest Editors: Kyoichi Sawamura, Chau-Ti Ting, Artyom Kopp, and Leonie C. Moyle Copyright © 2012 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “International Journal of Evolutionary Biology.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Giacomo Bernardi, USA Kazuho Ikeo, Japan Jeffrey R. Powell, USA Terr y Burke, UK Yoh Iwasa, Japan Hudson Kern Reeve, USA Ignacio Doadrio, Spain Henrik J. Jensen, UK Y. Satta, Japan Simon Easteal, Australia Amitabh Joshi, India Koji Tamura, Japan Santiago F. Elena, Spain Hirohisa Kishino, Japan Yoshio Tateno, Japan Renato Fani, Italy A. Moya, Spain E. N. Trifonov, Israel Dmitry A. Filatov, UK G. Pesole, Italy Eske Willerslev, Denmark F. Gonza’lez-Candelas, Spain I. Popescu, USA Shozo Yokoyama, USA D. Graur, USA David Posada, Spain Contents Mechanisms of Speciation, Kyoichi Sawamura, Chau-Ti Ting, Artyom Kopp, and Leonie C. Moyle Volume 2012, Article ID 820358, 2 pages Cuticular Hydrocarbon Content that Affects Male Mate Preference of Drosophila melanogaster from West Africa, Aya Takahashi, Nao Fujiwara-Tsujii, Ryohei Yamaoka, Masanobu Itoh, Mamiko Ozaki, and Toshiyuki Takano-Shimizu Volume 2012, Article ID 278903, 10 pages Evolutionary Implications of Mechanistic Models of TE-Mediated Hybrid Incompatibility, Dean M. Castillo and Leonie C. Moyle Volume 2012, Article ID 698198, 12 pages DNA Barcoding and Molecular Phylogeny of Drosophila lini and Its Sibling Species, Yi-Feng Li, Shuo-Yang Wen, Kuniko Kawai, Jian-Jun Gao, Yao-Guang Hu, Ryoko Segawa, and Masanori J. -
Why Do Male Antler Flies (Protopiophila Litigata) Fight? the Role of Male Combat in the Structure of Mating Aggregations on Moose Antlers
Ethology Ecology & Evolution 11: 287-301, 1999 Why do male antler flies (Protopiophila litigata) fight? The role of male combat in the structure of mating aggregations on moose antlers R. BONDURIANSKY 1 and R.J. BROOKS Department of Zoology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 Received 1 August 1997, accepted 20 May 1999 The antler fly Protopiophila litigata Bonduriansky (Diptera Piophilidae) forms large mating/oviposition aggregations on discarded moose (Alces alces) antlers, where the strikingly aggressive males engage in frequent combat. According to theory, costly fighting behaviour will be maintained by selection only if winners sire more progeny than losers. Through a field study of individu- ally marked flies, we addressed the question “Why do male antler flies fight?” by investigating what resources males compete for on antlers, whether or not large male body size and resulting advantage in agonistic encounters confers position- al advantage in the mating aggregation, and whether the successful males expe- rience greater survivorship or greater mating frequency. As expected, most ago- nistic contests were won by the larger male. Large males tended to live longer, mate more frequently, and achieve more matings over their lifetimes than small males. Males fought and defended territories primarily on the upward-facing (‘upper’) surfaces of antlers. The main oviposition site attracted the highest den- sity of single males, and mean body size of single males was largest in this region. Males mate-searching near the main oviposition site achieved the highest mean lifetime mating success on the upper surface. Multiple regression analysis indicated that the main oviposition site was the only region where mate- searching tended to increase male mating frequency and, on average, males mated nearly twice as frequently when mate-searching there as they did when mate-searching elsewhere. -
Cross-Study Comparison Reveals Common Genomic, Network, *Corresponding Author: Associate Editor: Signaling in Ion and Water Balance Regulated by Excretion Via 2009)
Cross-Study Comparison Reveals Common Genomic, Network, and Functional Signatures of Desiccation Resistance in Drosophila melanogaster Marina Telonis-Scott,*,1 Carla M. Sgro, 1 Ary A. Hoffmann,2 and Philippa C. Griffin2 1School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia 2School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Melbourne, VIC, Australia *Corresponding author: E-mail: [email protected]. Associate editor: Ilya Ruvinsky Abstract Repeated attempts to map the genomic basis of complex traits often yield different outcomes because of the influence of genetic background, gene-by-environment interactions, and/or statistical limitations. However, where repeatability is low at the level of individual genes, overlap often occurs in gene ontology categories, genetic pathways, and interaction networks. Here we report on the genomic overlap for natural desiccation resistance from a Pool-genome-wide association study experiment and a selection experimentinfliescollectedfromthesameregioninsoutheasternAustraliaindifferent years. We identified over 600 single nucleotide polymorphisms associated with desiccation resistance in flies derived from almost 1,000 wild-caught genotypes, a similar number of loci to that observed in our previous genomic study of selected lines, demonstrating the genetic complexity of this ecologically important trait. By harnessing the power of cross-study comparison, we narrowed the candidates from almost 400 genes in each study to a core set of 45 genes, enriched for stimulus, stress, and defense responses. In addition to gene-level overlap, there was higher order congruence at the network and functional levels, suggesting genetic redundancy in key stress sensing, stress response, immunity, signaling, and gene expression pathways. We also identified variants linked to different molecular aspects of desiccation physiology previously verified from functional experiments. -
Diptera) in the Nearctic Region Sabrina Rochefort1, Marjolaine Giroux2, Jade Savage3 and Terry A
Canadian Journal of Arthropod Identifi cation No. 27 (January, 2015) ROCHEFORT ET AL. Key to Forensically Important Piophilidae (Diptera) in the Nearctic Region Sabrina Rochefort1, Marjolaine Giroux2, Jade Savage3 and Terry A. Wheeler1 1Department of Natural Resource Sciences, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada; [email protected], [email protected] 2Montréal Insectarium / Space for life, 4581, rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada; [email protected] 3Biological Sciences, Bishop’s University, 2600 College Street, Sherbrooke, QC, J1M 1Z7, Canada [email protected]; Abstract Many species of Piophilidae (Diptera) are relevant to forensic entomology because their presence on a corpse can be helpful in estimating the postmortem interval (PMI) and document insect succession. The aims of this paper are to document the fauna of forensically relevant Piophilidae species worldwide and to present an updated checklist and identifi cation key to the Nearctic species, as existing keys are either outdated, too broad in geographical scope to be user-friendly, and/or contain ambiguous characters. Thirteen species are included in the checklist and key. Information on their biology, taxonomy, character variability, and distribution is provided, supplementing the extensive work of McAlpine (1977). Introduction stages (Martinez et al. 2006, Grisales et al. 2010). Forensic entomology is the use of insects and other Identifying species of forensic importance can arthropods as evidence in legal investigations (Catts sometimes be challenging when using morphological & Goff 1992). An important aspect of the discipline characters alone (Byrd & Castner 2001, Amendt et al. involves the estimation of the postmortem interval (PMI) 2011) and alternatives such as DNA markers have been based on arthropods associated with a body, an approach developed to identify problematic specimens (Wells that requires extensive knowledge of the local fauna and & Stevens 2008). -
Adaptive Dynamics of Cuticular Hydrocarbons in Drosophila
doi: 10.1111/jeb.12988 Adaptive dynamics of cuticular hydrocarbons in Drosophila S. RAJPUROHIT*, R. HANUS†,V.VRKOSLAV†,E.L.BEHRMAN*,A.O.BERGLAND‡, D. PETROV§,J.CVACKA † & P. S. SCHMIDT* *Department of Biology, University of Pennsylvania, Philadelphia, PA, USA †The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic ‡Department of Biology, University of Virginia, Charlottesville, VA, USA §Department of Biology, Stanford University, Stanford, CA, USA Keywords: Abstract cuticular hydrocarbons; Cuticular hydrocarbons (CHCs) are hydrophobic compounds deposited on Drosophila; the arthropod cuticle that are of functional significance with respect to stress experimental evolution; tolerance, social interactions and mating dynamics. We characterized CHC spatiotemporal variation; profiles in natural populations of Drosophila melanogaster at five levels: across thermal plasticity. a latitudinal transect in the eastern United States, as a function of develop- mental temperature during culture, across seasonal time in replicate years, and as a function of rapid evolution in experimental mesocosms in the field. Furthermore, we also characterized spatial and temporal changes in allele frequencies for SNPs in genes that are associated with the production and chemical profile of CHCs. Our data demonstrate a striking degree of paral- lelism for clinal and seasonal variation in CHCs in this taxon; CHC profiles also demonstrate significant plasticity in response to rearing temperature, and the observed patterns of plasticity parallel the spatiotemporal patterns observed in nature. We find that these congruent shifts in CHC profiles across time and space are also mirrored by predictable shifts in allele fre- quencies at SNPs associated with CHC chain length.