The Process Group Approach to Reliable Distributed Computing

Total Page:16

File Type:pdf, Size:1020Kb

The Process Group Approach to Reliable Distributed Computing Business Computing THE PROCESS GROUP APPROACH TO RELIABLE DISTRIBUTED COMPUTING Kenneth P. Birman One might expect the reliability of a distributed system to correspond directly to the reliability of its constituents, but this is not always the case. The mechanisms used to structure a distributed system and to implement cooperation between components play a vital role in determining the reliability of the system. Many trading information. 1 It is not un- all system can be greatly enhanced. contemporary distributed operating common for brokers to coordinate Figure 1 illustrates a possible in- systems have placed emphasis on com- trading activities across multiple terface to a trading system. The dis- munication performance, overlooking markets. play is centered around the current the need for tools to integrate com- Trading strategies rely on accurate position of the account being traded, ponents into a reliable whole. The pricing and market-volatility data, showing purchases and sales as they communication primitives supported dynamically changing databases giv- occur. A broker typically authorizes give generally reliable behavior, but ing the firm's holdings in various purchases or sales of shares in a exhibit problematic semantics when equities, news and analysis data, and stock, specifying limits on the price transient failures or system config- elaborate financial and economic and the number of shares. These in- uration changes occur. The resulting models based on relationships be- structions are communicated to the building blocks are, therefore, unsuit- tween financial instruments. Any dis- trading floor, where agents of the able for facilitating the construction of tributed system in support of this brokerage or bank trade as many systems where reliability is important. application must serve multiple com- shares as possible, remaining within This article reviews 10 years of munities: the firm as a whole, where this authorized window. The display research on ISIS, a system that pro- reliability and security are key con- illustrates several points: vides tools to support the construc- siderations; the brokers, who depend tion of reliable distributed software. on speed and the ability to customize • Information backplane. The broker The thesis underlying ISIS is that the trading environment; and the would construct such a display by in- development of reliable distributed system administrators, who seek uni- terconnecting elementary widgets software can be simplified using pro- formity, ease of monitoring and con- (e.g., graphical windows, computa- cess groups and group programming trol. A theme of this article is that all tional widgets) so that the output of tools. This article describes the ap- of these issues revolve around the one becomes the input to another. proach taken, surveys the system, technology used to "glue the system Seen in the large, this implies the and discusses experiences with real together." By endowing the corre- ability to publish messages and sub- applications. sponding software layer with pre- scribe to messages sent from program It will be helpful to illustrate dictable, fault-tolerant behavior, the to program on topics that make up group programming and ISIS in a flexibility and reliability of the over- the "corporate information back- setting where the system has found plane" of the brokerage. Such a IAlthough this class of systems certainly de- backplane would support a naming rapid acceptance: brokerage and mands high performance, there are no real- trading systems. These systems inte- time deadlines or hard time constraints, such as structure, communication interfaces, grate large numbers of demanding in the FAA's Advanced Automation System access restrictions, and some sort of [14]. This issue is discussed further in the sec- applications and require timely reac- tion "ISIS and Other Distributed Computing selective history mechanism. For ex- tion to high volumes of pricing and Technologies." ample, when subscribing to a topic, ¢OMMUNICATIONSOWTHllACM December 1993/Vol.36, No.12 3~ ® Business Computing an application will often need key region, a doctor reviewing the status prevent users from realizing the po- messages posted to that topic in the of patients in a hospital from a work- tential of the distributed computing past. station at home, a design group col- infrastructure on which their appli- • Customization. The display suggests laborating to develop a new product, cations run. that the system must be easily cus- or application programs cooperating tomized. The information backplane in a factory-floor process control set- Process Groups must be organized in a systematic ting. The software of a modern tele- Two styles of process group usage way (so that the broker can easily communications switching product is are seen in most ISIS applications: track down the name of communica- faced with many of the same issues, tion streams of interest) and flexible as is software implementing a data- Anonymous groups: These arise (allowing the introduction of new base that will be used in a large dis- when an application publishes data communication streams while the tributed selting. To build applica- under some "topic," and other pro- system is active). tions for the networked envi- cesses subscribe to that topic. For an • Hierarchical structure. Although the ronments of the future, a technology application to operate automatically trader will treat the wide-area system is needed that will make it as easy to and reliably, anonymous groups in a seamless way, communication solve these types of problems as it is should provide certain properties: disruptions are far more common on to build graphical user interfaces wide-area links (say, from New York (GUIs) today. 1. It should be possible to send mes- to Tokyo or Zurich) than on local- A central premise of the 1SIS proj- sages to the group using a group ad- area links. This gives the system a ect, shared with several other efforts dress. The high-level programmer hierarchical structure composed of [2, 14, 19, 22, 25] is that support for should not be involved in expanding local-area systems which are closely programming with distributed groups the group address into a list of desti- coupled and rich in services, inter- of cooperating programs is the key to nations. connected by less reliable and solving problems such as the ones 2. If the sender and subscribers higher-latency wide-area communi- previously mentioned. For example, remain operational, messages should cation links. a fault-tolerant data analysis service be delivered exactly once. If the What about the reliability implica- can be implemented by a group of sender fails, a message should be de- tions of such an architecture? In Fig- programs that adapt transparently to livered to all or none of the subscrib- ure 1, the trader has graphed a com- failures and recoveries. The publica- ers. The application programmer puted index of technology stocks tion/subscription style of interaction should not need to worry about mes- against the price of IBM, and it is involves an anonymous use of pro- sage loss or duplication. easy to imagine that such customiza- cess groups: here, the group consists 3. Messages should be delivered to tion could include computations crit- of a set of publishers and subscribers subscribers in some sensible order. ical to the trading strategy of the that vary dramatically as brokers For example, one would expect mes- firm. In Figure 2, the analysis pro- change the instruments they trade. sages to be delivered in an order con- gram is '"shadowed" by additional Each interacts with the group sistent with causal dependencies: if a copies, to indicate that it has been through a group name (the topic), message m is published by a program made fault-tolerant (i.e., it would but the group membership is not that first received m] . mi, then m remain available even if the broker's tracked or used within the computa- might be dependent on these prior workstation failed). A broker is un- tion. Although the processes publish- messages. If some other subscriber likely to be a sophisticated program- ing or subscribing to a topic do not will receive m as well as one or more mer, so fault-tolerance such as this cooperate directly, when this struc- of these prior messages, one would would have to be introduced by the ture is employed, the reliability of the expect them to be delivered first. system--the trader's only action application will depend on the reli- Stronger ordering properties might being to request it, perhaps by speci- ability of group communication. It is also be desired, as discussed later. fying the degree of reliability needed easy to see how problems could arise 4. It should be possible for a sub- for this analytic program. This if, for example, two brokers monitor- scriber to obtain a history of the means the system must automatically ing the same stock see different pric- group--a log of key events and the replicate or checkpoint the computa- ing information. order in which they were received. 2 tion, placing the replicas on proces- Process groups of various kinds If n messages are posted and the first sors that fail independently from the arise naturally throughout a distrib- message seen by a new subscriber will broker's workstation, and activating a uted system. Yet, current distributed be message mi, one would expect backup if the primary fails. computing environments provide lit- messages ml • • • mi-i to be reflected The requirements of modern tle support for group communica- in the history, and messages m i . trading environments are not unique tion patterns and programming. m,, to all be delivered to the new pro- to the application. It is easy to re- These issues have been left to the cess. If some messages are missing phrase this example in terms of the application programmer, and appli- from the history, or included both in issues confronted by a team of seis- cation programmers have been mologists cooperating to interpret largely unable to respond to the chal- 2The application itself would distinguish mes- the results of a seismic survey under lenge.
Recommended publications
  • Parallel Programming
    Parallel Programming Parallel Programming Parallel Computing Hardware Shared memory: multiple cpus are attached to the BUS all processors share the same primary memory the same memory address on different CPU’s refer to the same memory location CPU-to-memory connection becomes a bottleneck: shared memory computers cannot scale very well Parallel Programming Parallel Computing Hardware Distributed memory: each processor has its own private memory computational tasks can only operate on local data infinite available memory through adding nodes requires more difficult programming Parallel Programming OpenMP versus MPI OpenMP (Open Multi-Processing): easy to use; loop-level parallelism non-loop-level parallelism is more difficult limited to shared memory computers cannot handle very large problems MPI(Message Passing Interface): require low-level programming; more difficult programming scalable cost/size can handle very large problems Parallel Programming MPI Distributed memory: Each processor can access only the instructions/data stored in its own memory. The machine has an interconnection network that supports passing messages between processors. A user specifies a number of concurrent processes when program begins. Every process executes the same program, though theflow of execution may depend on the processors unique ID number (e.g. “if (my id == 0) then ”). ··· Each process performs computations on its local variables, then communicates with other processes (repeat), to eventually achieve the computed result. In this model, processors pass messages both to send/receive information, and to synchronize with one another. Parallel Programming Introduction to MPI Communicators and Groups: MPI uses objects called communicators and groups to define which collection of processes may communicate with each other.
    [Show full text]
  • Real-Time Performance During CUDA™ a Demonstration and Analysis of Redhawk™ CUDA RT Optimizations
    A Concurrent Real-Time White Paper 2881 Gateway Drive Pompano Beach, FL 33069 (954) 974-1700 www.concurrent-rt.com Real-Time Performance During CUDA™ A Demonstration and Analysis of RedHawk™ CUDA RT Optimizations By: Concurrent Real-Time Linux® Development Team November 2010 Overview There are many challenges to creating a real-time Linux distribution that provides guaranteed low process-dispatch latencies and minimal process run-time jitter. Concurrent Real Time’s RedHawk Linux distribution meets and exceeds these challenges, providing a hard real-time environment on many qualified hardware configurations, even in the presence of a heavy system load. However, there are additional challenges faced when guaranteeing real-time performance of processes while CUDA applications are simultaneously running on the system. The proprietary CUDA driver supplied by NVIDIA® frequently makes demands upon kernel resources that can dramatically impact real-time performance. This paper discusses a demonstration application developed by Concurrent to illustrate that RedHawk Linux kernel optimizations allow hard real-time performance guarantees to be preserved even while demanding CUDA applications are running. The test results will show how RedHawk performance compares to CentOS performance running the same application. The design and implementation details of the demonstration application are also discussed in this paper. Demonstration This demonstration features two selectable real-time test modes: 1. Jitter Mode: measure and graph the run-time jitter of a real-time process 2. PDL Mode: measure and graph the process-dispatch latency of a real-time process While the demonstration is running, it is possible to switch between these different modes at any time.
    [Show full text]
  • Unit: 4 Processes and Threads in Distributed Systems
    Unit: 4 Processes and Threads in Distributed Systems Thread A program has one or more locus of execution. Each execution is called a thread of execution. In traditional operating systems, each process has an address space and a single thread of execution. It is the smallest unit of processing that can be scheduled by an operating system. A thread is a single sequence stream within in a process. Because threads have some of the properties of processes, they are sometimes called lightweight processes. In a process, threads allow multiple executions of streams. Thread Structure Process is used to group resources together and threads are the entities scheduled for execution on the CPU. The thread has a program counter that keeps track of which instruction to execute next. It has registers, which holds its current working variables. It has a stack, which contains the execution history, with one frame for each procedure called but not yet returned from. Although a thread must execute in some process, the thread and its process are different concepts and can be treated separately. What threads add to the process model is to allow multiple executions to take place in the same process environment, to a large degree independent of one another. Having multiple threads running in parallel in one process is similar to having multiple processes running in parallel in one computer. Figure: (a) Three processes each with one thread. (b) One process with three threads. In former case, the threads share an address space, open files, and other resources. In the latter case, process share physical memory, disks, printers and other resources.
    [Show full text]
  • Gpu Concurrency
    GPU CONCURRENCY ROBERT SEARLES 5/26/2021 EXECUTION SCHEDULING & MANAGEMENT Pre-emptive scheduling Concurrent scheduling Processes share GPU through time-slicing Processes run on GPU simultaneously Scheduling managed by system User creates & manages scheduling streams C B A B C A B A time time time- slice 2 CUDA CONCURRENCY MECHANISMS Streams MPS MIG Partition Type Single process Logical Physical Max Partitions Unlimited 48 7 Performance Isolation No By percentage Yes Memory Protection No Yes Yes Memory Bandwidth QoS No No Yes Error Isolation No No Yes Cross-Partition Interop Always IPC Limited IPC Reconfigure Dynamic Process launch When idle MPS: Multi-Process Service MIG: Multi-Instance GPU 3 CUDA STREAMS 4 STREAM SEMANTICS 1. Two operations issued into the same stream will execute in issue- order. Operation B issued after Operation A will not begin to execute until Operation A has completed. 2. Two operations issued into separate streams have no ordering prescribed by CUDA. Operation A issued into stream 1 may execute before, during, or after Operation B issued into stream 2. Operation: Usually, cudaMemcpyAsync or a kernel call. More generally, most CUDA API calls that take a stream parameter, as well as stream callbacks. 5 STREAM EXAMPLES Host/Device execution concurrency: Kernel<<<b, t>>>(…); // this kernel execution can overlap with cpuFunction(…); // this host code Concurrent kernels: Kernel<<<b, t, 0, streamA>>>(…); // these kernels have the possibility Kernel<<<b, t, 0, streamB>>>(…); // to execute concurrently In practice, concurrent
    [Show full text]
  • Hyper-Threading Technology Architecture and Microarchitecture
    Hyper-Threading Technology Architecture and Microarchitecture Deborah T. Marr, Desktop Products Group, Intel Corp. Frank Binns, Desktop ProductsGroup, Intel Corp. David L. Hill, Desktop Products Group, Intel Corp. Glenn Hinton, Desktop Products Group, Intel Corp. David A. Koufaty, Desktop Products Group, Intel Corp. J. Alan Miller, Desktop Products Group, Intel Corp. Michael Upton, CPU Architecture, Desktop Products Group, Intel Corp. Index words: architecture, microarchitecture, Hyper-Threading Technology, simultaneous multi- threading, multiprocessor INTRODUCTION ABSTRACT The amazing growth of the Internet and telecommunications is powered by ever-faster systems Intel’s Hyper-Threading Technology brings the concept demanding increasingly higher levels of processor of simultaneous multi-threading to the Intel performance. To keep up with this demand we cannot Architecture. Hyper-Threading Technology makes a rely entirely on traditional approaches to processor single physical processor appear as two logical design. Microarchitecture techniques used to achieve processors; the physical execution resources are shared past processor performance improvement–super- and the architecture state is duplicated for the two pipelining, branch prediction, super-scalar execution, logical processors. From a software or architecture out-of-order execution, caches–have made perspective, this means operating systems and user microprocessors increasingly more complex, have more programs can schedule processes or threads to logical transistors, and consume more power. In fact, transistor processors as they would on multiple physical counts and power are increasing at rates greater than processors. From a microarchitecture perspective, this processor performance. Processor architects are means that instructions from both logical processors therefore looking for ways to improve performance at a will persist and execute simultaneously on shared greater rate than transistor counts and power execution resources.
    [Show full text]
  • Scheduling Many-Task Workloads on Supercomputers: Dealing with Trailing Tasks
    Scheduling Many-Task Workloads on Supercomputers: Dealing with Trailing Tasks Timothy G. Armstrong, Zhao Zhang Daniel S. Katz, Michael Wilde, Ian T. Foster Department of Computer Science Computation Institute University of Chicago University of Chicago & Argonne National Laboratory [email protected], [email protected] [email protected], [email protected], [email protected] Abstract—In order for many-task applications to be attrac- as a worker and allocate one task per node. If tasks are tive candidates for running on high-end supercomputers, they single-threaded, each core or virtual thread can be treated must be able to benefit from the additional compute, I/O, as a worker. and communication performance provided by high-end HPC hardware relative to clusters, grids, or clouds. Typically this The second feature of many-task applications is an empha- means that the application should use the HPC resource in sis on high performance. The many tasks that make up the such a way that it can reduce time to solution beyond what application effectively collaborate to produce some result, is possible otherwise. Furthermore, it is necessary to make and in many cases it is important to get the results quickly. efficient use of the computational resources, achieving high This feature motivates the development of techniques to levels of utilization. Satisfying these twin goals is not trivial, because while the efficiently run many-task applications on HPC hardware. It parallelism in many task computations can vary over time, allows people to design and develop performance-critical on many large machines the allocation policy requires that applications in a many-task style and enables the scaling worker CPUs be provisioned and also relinquished in large up of existing many-task applications to run on much larger blocks rather than individually.
    [Show full text]
  • Intel's Hyper-Threading
    Intel’s Hyper-Threading Cody Tinker & Christopher Valerino Introduction ● How to handle a thread, or the smallest portion of code that can be run independently, plays a core component in enhancing a program's parallelism. ● Due to the fact that modern computers process many tasks and programs simultaneously, techniques that allow for threads to be handled more efficiently to lower processor downtime are valuable. ● Motive is to reduce the number of idle resources of a processor. ● Examples of processors that use hyperthreading ○ Intel Xeon D-1529 ○ Intel i7-6785R ○ Intel Pentium D1517 Introduction ● Two main trends have been followed to increase parallelism: ○ Increase number of cores on a chip ○ Increase core throughput What is Multithreading? ● Executing more than one thread at a time ● Normally, an operating system handles a program by scheduling individual threads and then passing them to the processor. ● Two different types of hardware multithreading ○ Temporal ■ One thread per pipeline stage ○ Simultaneous (SMT) ■ Multiple threads per pipeline stage ● Intel’s hyper-threading is a SMT design Hyper-threading ● Hyper-threading is the hardware solution to increasing processor throughput by decreasing resource idle time. ● Allows multiple concurrent threads to be executed ○ Threads are interleaved so that resources not being used by one thread are used by others ○ Most processors are limited to 2 concurrent threads per physical core ○ Some do support 8 concurrent threads per physical core ● Needs the ability to fetch instructions from
    [Show full text]
  • COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous Multi-Threading and Multi-Core Processors Edgar Gabriel Spring 2011
    COSC 6385 Computer Architecture - Multi-Processors (IV) Simultaneous multi-threading and multi-core processors Edgar Gabriel Spring 2011 Edgar Gabriel Moore’s Law • Long-term trend on the number of transistor per integrated circuit • Number of transistors double every ~18 month Source: http://en.wikipedia.org/wki/Images:Moores_law.svg COSC 6385 – Computer Architecture Edgar Gabriel 1 What do we do with that many transistors? • Optimizing the execution of a single instruction stream through – Pipelining • Overlap the execution of multiple instructions • Example: all RISC architectures; Intel x86 underneath the hood – Out-of-order execution: • Allow instructions to overtake each other in accordance with code dependencies (RAW, WAW, WAR) • Example: all commercial processors (Intel, AMD, IBM, SUN) – Branch prediction and speculative execution: • Reduce the number of stall cycles due to unresolved branches • Example: (nearly) all commercial processors COSC 6385 – Computer Architecture Edgar Gabriel What do we do with that many transistors? (II) – Multi-issue processors: • Allow multiple instructions to start execution per clock cycle • Superscalar (Intel x86, AMD, …) vs. VLIW architectures – VLIW/EPIC architectures: • Allow compilers to indicate independent instructions per issue packet • Example: Intel Itanium series – Vector units: • Allow for the efficient expression and execution of vector operations • Example: SSE, SSE2, SSE3, SSE4 instructions COSC 6385 – Computer Architecture Edgar Gabriel 2 Limitations of optimizing a single instruction
    [Show full text]
  • IMTEC-91-58 High-Performance Computing: Industry Uses Of
    ‘F ---l_l,__*“.^*___l.ll_l-_.. - -.”_-._ .----._..-_.. ___..-.-..,_.. -...-I_.__...... liitiltd l_--._-_.---..-_---. Sl;tl,~s (;~~ttc~ral Accottttt.irtg Offiw ---- GAO 1Zcport 1,oCongressional Request,ers i HIGH-PERFORMANCE COMPUTING Industry Uses of Supercomputers and High-Speed Networks 144778 RELEASED (;AO/IM’l’E(:-!tl-T,El .-. I .II ._. ._._. “..__-I ._.,__ _. _ .._.. ._.-._ . .I .._..-.-...-..--.-- ~-- United States General Accounting Office GAO Washington, D.C. 20648 Information Management and Technology Division B-244488 July 30,199l The Honorable Ernest F. Hollings ‘Chairman, Senate Committee on Commerce, Science, and Transportation The Honorable Al Gore Chairman, Subcommittee on Science, Technology, and Space Senate Committee on Commerce, Science, and Transportation The Honorable George E. Brown, Jr. Chairman, House Committee on Science, Space, and Technology The Honorable Robert S. Walker Ranking Minority Member House Committee on Science, Space, and Technology The HonorableTim Valentine Chairman, Subcommittee on Technology and Competitiveness House Committee on Scientie, Space, and Technology The Honorable Tom Lewis Ranking Minority Member Subcommittee on Technology and Competitiveness House Committee on Science, Space, and Technology This report responds to your October 2,1990, and March 11,1991, requests for information on supercomputers and high-speed networks. You specifically asked that we l provide examples of how various industries are using supercomputers to improve products, reduce costs, save time, and provide other benefits; . identify barriers preventing the increased use of supercomputers; and . provide examples of how certain industries are using and benefitting from high-speed networks. Page 1 GAO/JMTEG91-59 Supercomputera and High-Speed Networks B244488 As agreed with the Senate Committee on Commerce, Science, and Trans- portation, and Subcommittee on Science, Technology, and Space, our review of supercomputers examined five industries-oil, aerospace, automobile, and chemical and pharmaceutical.
    [Show full text]
  • Introduction to Parallel Computing
    INTRODUCTION TO PARALLEL COMPUTING Plamen Krastev Office: 38 Oxford, Room 117 Email: [email protected] FAS Research Computing Harvard University OBJECTIVES: To introduce you to the basic concepts and ideas in parallel computing To familiarize you with the major programming models in parallel computing To provide you with with guidance for designing efficient parallel programs 2 OUTLINE: Introduction to Parallel Computing / High Performance Computing (HPC) Concepts and terminology Parallel programming models Parallelizing your programs Parallel examples 3 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage 5 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage Using the world’s fastest and largest computers to solve large and complex problems. 5 Serial Computation: Traditionally software has been written for serial computations: To be run on a single computer having a single Central Processing Unit (CPU) A problem is broken into a discrete set of instructions Instructions are executed one after another Only one instruction can be executed at any moment in time 6 Parallel Computing: In the simplest sense, parallel
    [Show full text]
  • Computer-System Architecture (Cont.) Symmetrically Constructed Clusters (Cont.) Advantages: 1
    Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications concurrently on all computers in the cluster. Disadvantages: 1. Applications must be written specifically to take advantage of the cluster by using a technique known as parallelization (dividing a program into separate components that run in parallel on individual computers in the cluster). Parallelization – dividing a program into separate components that run in parallel on individual computers in the cluster. Computer-System Architecture (cont.) interconnect interconnect computer computer computer storage area network (SAN) General structure of a clustered system. Operating-System Structure The operating system provides the environment within which programs are executed. Operating systems must have the ability to multiprogram. (A single program cannot, in general, keep either the CPU or the I/O devices busy at all times.) Single users frequently have multiple programs running. Multiprogramming increases CPU utilization by organizing jobs (code and data) so that the CPU always has one to execute. The operating system keeps several jobs in memory (on disk) simultaneously, which is called a job pool. This pool consists of all processes residing on disk awaiting allocation of main memory. (to be executed) Operating-System Structure 0 operating system job 1 job 2 job 3 job 4 job 5 512M Memory layout for the multiprogramming system. The set of jobs in memory can be a subset of the jobs kept in the job pool. The operating system picks and begins to execute one of the jobs in memory. Eventually, the job may have to wait for some task, such as an I/O operation to complete.
    [Show full text]
  • Lect. 9: Multithreading
    Lect. 9: Multithreading ▪ Memory latencies and even latencies to lower level caches are becoming longer w.r.t. processor cycle times ▪ There are basically 3 ways to hide/tolerate such latencies by overlapping computation with the memory access – Dynamic out-of-order scheduling – Prefetching – Multithreading ▪ OOO execution and prefetching allow overlap of computation and memory access within the same thread (these were covered in CS3 Computer Architecture) ▪ Multithreading allows overlap of memory access of one thread/ process with computation by another thread/process CS4/MSc Parallel Architectures - 2017-2018 1 Blocked Multithreading ▪ Basic idea: – Recall multi-tasking: on I/O a process is context-switched out of the processor by the OS OS interrupt handler OS interrupt handler running running process 1 process 2 Process 1 running running running system call for I/O I/O completion – With multithreading a thread/process is context-switched out of the pipeline by the hardware on longer-latency operations Hardware context Hardware context switch switch process 1 process 2 Process 1 running running running Long-latency operation Long-latency operation CS4/MSc Parallel Architectures - 2017-2018 2 Blocked Multithreading ▪ Basic idea: – Unlike in multi-tasking, context is still kept in the processor and OS is not aware of any changes – Context switch overhead is minimal (usually only a few cycles) – Unlike in multi-tasking, the completion of the long-latency operation does not trigger a context switch (the blocked thread is simply marked
    [Show full text]