Barely Visible but Highly Unique: the Ostreococcus Genome Unveils Its Secrets

Total Page:16

File Type:pdf, Size:1020Kb

Barely Visible but Highly Unique: the Ostreococcus Genome Unveils Its Secrets Ghent University Faculty of Sciences Department of Molecular Genetics VIB Department of Plant Systems Biology Bioinformatics and Evolutionary Genomics Barely visible but highly unique: the Ostreococcus genome unveils its secrets Steven Robbens Promotor: Prof. Dr. Yves Van de Peer December 2007 Dissertation submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Sciences, Biotechnology Examination committee Prof. Dr. Ann Depicker (chairwoman) - Faculty of Sciences, University Ghent Prof. Dr. Yves Van de Peer (promotor) - Faculty of Sciences, University Ghent Prof. Dr. Hervé Moreau - CNRS, France Pierre Rouzé - Faculty of Sciences, University Ghent Dr. Pieter De Bleser- Faculty of Sciences, University Ghent Prof. Dr. Dirk Inzé - Faculty of Sciences, University Ghent Dr. Lieven De Veylder - Faculty of Sciences, University Ghent Dr. Martin Kuiper - Faculty of Sciences, University Ghent Dr. Olivier De Clerck - Faculty of Sciences, University Ghent Thanks to ... Working in this lab has been really exciting for me, not only for the work I was able to perform, but even more in particular because of the people I worked with. So this page is meant for them… As it always goes, I also would first like to thank my “boss” Yves. Not because this is the first person you should thank, but because he made my 5 years here really worth it. He gave me all the freedom, and if necessary the knowledge, I needed to finish this PhD. Most of all I appreciate you for not being a “bossy boss”: paintball, karting, ice skating, playstation, … you joint all these activities. Good luck in the future with your group!! Going a bit down in the official hierarchy, but that’s really all it means, I bump into Pierre. As we both worked together a lot unveiling all the secrets of Ostreococcus, I was, and still am, amazed by your never-ending interest in science. Discovering one “special” gene could make you so enthusiastic, that we only could follow your stream of enthusiasm. Going a bit away from Gent, I would like to thank Hervé and his team for introducing me to our tiny green friend. In the beginning, Banyuls seemed a remote place to go and to do science, but the beach, the sun, and more in particular the really nice people changed this view completely. Merci beaucoup! Finally, I return to the people I spent almost 1800 days with, my colleagues. Following the time course of my PhD, many thanks to Klaas for introducing me to bioinformatics, Jan, Jeroen, Stefanie and Tineke for being real members and Lieven for being an ad interim member of the number one island of the bioinformatics room. Many thanks to all the other BEGers for the many laughs, lunches, scientific discussions and most of all the nice atmosphere you created here. Cool place to work!! Working in this combined wet/dry lab also gave me to opportunity to leave my pc once and a while to interact with wet lab people, especially our Cuban Doctorandus (and his wife). Thanks for the nice talks in the lab and the many moves during one of the many parties. Finally I would like to thank my parents, my brother and his wife, all my friends and of course Sofie for all the support during this nice period of my life. Thanks. Table of contents Chapter 1 - Introduction ........................................................................... 09 Chapter 2 - The first green lineage cdc25 dual-specificity phosphatase ........ 29 Chapter 3 - Genome-wide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri ................................................ 49 Chapter 4 - Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features ........................................ 71 Chapter 5 - The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction ................................................... 93 Chapter 6 - Unique Regulation of the Calvin Cycle in the ultrasmall green alga Ostreococcus ....................................................................... 123 Chapter 7 - The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation ........................................ 137 Chapter 8 - Marine algae and vertebrates share the FTO gene implicated in human obesity ........................................................................ 161 Chapter 9 - Discussion/Future perspectives .............................................. 173 Summary - Samenvatting ...................................................... 183 Bibliography .......................................................................... 195 Appendix ............................................................................... 221 7 Introduction Introduction Introduction: algae (Graham and Wilcox, 1999) When talking about algae, we all think of these green, slimy plants attached to the surface of a swimming pool; or of the brown seaweeds covering rocks and beaches across the shoreline of the sea. Asian people see algae as an important source of food as they harbour many essential vitamins and irons. Finally, especially women get in touch with algae when they follow a therapy using algae to clean and heal the skin of their body, because algae contain many minerals which feed our skin. So everybody has been in touch with these plants, but not many people are aware of the variety that is present among these algae. Figure 1. Morphological differences among algae: a) unicellular green alga containing two flagella; b) unbranched, single celled filament; c) spherical colony; d,e) branched filament; f) plant like structure; g) brown kelp 11 Chapter 1 Algae can range in size from tiny single-celled organisms of only 1 micron in diameter to the 65 meter long giant brown kelps, forming underwater forests (fig. 1). In between these two extreme life forms lies a huge morphological diversity. Many algae occur as a unicellular organism, having a simple body plan, while other individual cells aggregate, forming a colony of non-specialized cells. These colonies can consist of a bunch of loosely packed cells, while others are formed in a highly organized fashion, thereby containing a fixed number and arrangement of cells throughout their life cycle. Some of these unicellular algae possess a flagellum which enables them to move around. Besides these unicellular algae, a common growth form among algae is the filament, where a chain of cells is formed after cell division, thereby sharing their cell wall. Filaments can form simple, unbranched structures, composed of a single series of cells; or they can grow into complex structures with many branches and containing multiple rows of cells next to each other. However, parenchymatous algae have the most complex body plan: they possess plant tissue (thallus) composed of undifferentiated cells, providing them with analogous structures as seen in vascular plants (roots, leaves and stems). Although these thalli are undifferentiated, visible differences and functions can be noticed. A nice example within the world of the algae is the kelp, which is a large brown seaweed which can form underwater forests. Their thallus can be divided into three parts: the holdfast, which serves as an anchor; a stipe which supports the blades; and the blades itself, providing them with a vascular leaf-like structure. The huge morphological differences found between algae can be linked to their presence in virtually every ecosystem in the biosphere. Depending on the environment (marine water, fresh water or even terrestrial), the algae have adapted themselves to survive in every circumstance. Algae capture light energy to convert inorganic substances into organic matter through oxygenic photosynthesis. Therefore, the green pigment chlorophyll a, which is the only pigment able to convert light energy into the high energy bonds of organic molecules, is universally present among algae. However, despite the presence of chlorophyll a, not all algae have a green colour. This is caused by the presence of accessory pigments, which are essential for the survival of photosynthetic organisms in both low- and high irradiance habitats: in low-irradiance habitats (the depth record for algae lies around 250 meters, where the light intensity is 12 Introduction only 0.0005% of the surface light) these accessory pigments help in the collection of light which is not completely absorbed by chlorophyll a; in high-irradiance places they help in protecting the algae against photodamage. Depending on the amount and composition of these pigments, eukaryotic algae can be roughly subdivided into different groups: the red algae (Rhodophyta), the brown algae (Phaeophyta) and the green algae (Ben Ali et al, 2001). Rhodophyta: the 4,000-6,000 members of the red algae can occur as unicells, simple filaments, or complex filamentous aggregations. Besides chlorophyll a, they harbour accessory phycobilins and carotenoids (for protection against photodamage). Members of the light-harvesting phycobili-protein family are extremely efficient in harvesting blue and green lights in subtidal habitats. This explains the abundance of red algae in the greater depths of the oceans. Another unique characteristic among all red algae is the absence of a flagellum, making them immobile. The oldest fossil record was found in arctic Canada and is estimated to be around 750-1,250 million years old. Molecular measurements estimated the split of the red and green algae to have occurred
Recommended publications
  • Morphology, Genome Plasticity, and Phylogeny in the Genus
    Protist, Vol. 164, 643–659, xx 2013 http://www.elsevier.de/protis Published online date xxx ORIGINAL PAPER Morphology, Genome Plasticity, and Phylogeny in the Genus Ostreococcus Reveal a Cryptic Species, O. mediterraneus sp. nov. (Mamiellales, Mamiellophyceae) a,b c d a,b Lucie Subirana , Bérangère Péquin , Stéphanie Michely , Marie-Line Escande , a,b,2 a,b e a,b Julie Meilland , Evelyne Derelle , Birger Marin , Gwenaël Piganeau , a,b a,b a,b,1 Yves Desdevises , Hervé Moreau , and Nigel H. Grimsley a CNRS, UMR7232 Laboratoire de Biologie Intégrative des Organisms Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France b UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France c Québec-Océan, Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec (QC) G1 V 0A6, Canada d INRA UMR1319, AgroParisTech, Micalis, Bimlip, Bât. CBAI, BP 01, 78850 Thiverval-Grignon, France e Biozentrum Köln, Botanisches Institut, Universität zu Köln, Zülpicher Str. 47b, 50674 Köln, Germany Submitted December 4, 2011; Accepted June 18, 2013 Monitoring Editor: David Moreira Coastal marine waters in many regions worldwide support abundant populations of extremely small (1-3 ␮m diameter) unicellular eukaryotic green algae, dominant taxa including several species in the class Mamiellophyceae. Their diminutive size conceals surprising levels of genetic diversity and defies classical species’ descriptions. We present a detailed analysis within the genus Ostreococcus and show that morphological characteristics cannot be used to describe diversity within this group. Karyotypic analyses of the best-characterized species O. tauri show it to carry two chromosomes that vary in size between individual clonal lines, probably an evolutionarily ancient feature that emerged before species’ divergences within the Mamiellales.
    [Show full text]
  • Genome Analysis of the Smallest Free-Living Eukaryote Ostreococcus
    Genome analysis of the smallest free-living eukaryote SEE COMMENTARY Ostreococcus tauri unveils many unique features Evelyne Derellea,b, Conchita Ferrazb,c, Stephane Rombautsb,d, Pierre Rouze´ b,e, Alexandra Z. Wordenf, Steven Robbensd, Fre´ de´ ric Partenskyg, Sven Degroeved,h, Sophie Echeynie´ c, Richard Cookei, Yvan Saeysd, Jan Wuytsd, Kamel Jabbarij, Chris Bowlerk, Olivier Panaudi, BenoıˆtPie´ gui, Steven G. Ballk, Jean-Philippe Ralk, Franc¸ois-Yves Bougeta, Gwenael Piganeaua, Bernard De Baetsh, Andre´ Picarda,l, Michel Delsenyi, Jacques Demaillec, Yves Van de Peerd,m, and Herve´ Moreaua,m aObservatoire Oce´anologique, Laboratoire Arago, Unite´Mixte de Recherche 7628, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP44, 66651 Banyuls sur Mer Cedex, France; cInstitut de Ge´ne´ tique Humaine, Unite´Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 Rue de Cardonille, 34396 Montpellier Cedex 5, France; dDepartment of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology and eLaboratoire Associe´de l’Institut National de la Recherche Agronomique (France), Ghent University, Technologiepark 927, 9052 Ghent, Belgium; fRosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149; gStation Biologique, Unite´Mixte de Recherche 7144, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP74, 29682 Roscoff Cedex, France; hDepartment of Applied Mathematics, Biometrics and
    [Show full text]
  • Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes
    Current Biology 21, 328–333, February 22, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.01.037 Report Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes Cheong Xin Chan,1,5 Eun Chan Yang,2,5 Titas Banerjee,1 sequences in our local database, in which we included the Hwan Su Yoon,2,* Patrick T. Martone,3 Jose´ M. Estevez,4 23,961 predicted proteins from C. tuberculosum (see Table and Debashish Bhattacharya1,* S1 available online). Of these hits, 9,822 proteins (72.1%, 1Department of Ecology, Evolution, and Natural Resources including many P. cruentum paralogs) were present in C. tuber- and Institute of Marine and Coastal Sciences, Rutgers culosum and/or other red algae, 6,392 (46.9%) were shared University, New Brunswick, NJ 08901, USA with C. merolae, and 1,609 were found only in red algae. A total 2Bigelow Laboratory for Ocean Sciences, West Boothbay of 1,409 proteins had hits only to red algae and one other Harbor, ME 04575, USA phylum. Using this repertoire, we adopted a simplified recip- 3Department of Botany, University of British Columbia, 6270 rocal BLAST best-hits approach to study the pattern of exclu- University Boulevard, Vancouver, BC V6T 1Z4, Canada sive gene sharing between red algae and other phyla (see 4Instituto de Fisiologı´a, Biologı´a Molecular y Neurociencias Experimental Procedures). We found that 644 proteins showed (IFIBYNE UBA-CONICET), Facultad de Ciencias Exactas y evidence of exclusive gene sharing with red algae. Of these, Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, 145 (23%) were found only in red + green algae (hereafter, Argentina RG) and 139 (22%) only in red + Alveolata (Figure 1A).
    [Show full text]
  • Is Chloroplastic Class IIA Aldolase a Marine Enzyme&Quest;
    The ISME Journal (2016) 10, 2767–2772 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej SHORT COMMUNICATION Is chloroplastic class IIA aldolase a marine enzyme? Hitoshi Miyasaka1, Takeru Ogata1, Satoshi Tanaka2, Takeshi Ohama3, Sanae Kano4, Fujiwara Kazuhiro4,7, Shuhei Hayashi1, Shinjiro Yamamoto1, Hiro Takahashi5, Hideyuki Matsuura6 and Kazumasa Hirata6 1Department of Applied Life Science, Sojo University, Kumamoto, Japan; 2The Kansai Electric Power Co., Environmental Research Center, Keihanna-Plaza, Kyoto, Japan; 3School of Environmental Science and Engineering, Kochi University of Technology, Kochi, Japan; 4Chugai Technos Corporation, Hiroshima, Japan; 5Graduate School of Horticulture, Faculty of Horticulture, Chiba University, Chiba, Japan and 6Environmental Biotechnology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydo- monas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Treboux- iophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme.
    [Show full text]
  • Simplified Transformation of Ostreococcus Tauri Using
    G C A T T A C G G C A T genes Technical Note Simplified Transformation of Ostreococcus tauri Using Polyethylene Glycol Frédéric Sanchez 1, Solène Geffroy 2, Manon Norest 1, Sheree Yau 1, Hervé Moreau 1 and Nigel Grimsley 1,* 1 CNRS UMR7232 BIOM (Biologie Intégrative des Organismes Marin) Sorbonne University, 66650 Banyuls sur Mer, France; [email protected] (F.S.); [email protected] (M.N.); [email protected] (S.Y.); [email protected] (H.M.) 2 IFREMER, Centre Atlantique, 44331 Nantes CEDEX 03, France; solene.geff[email protected] * Correspondence: [email protected] Received: 15 March 2019; Accepted: 21 May 2019; Published: 26 May 2019 Abstract: Ostreococcus tauri is an easily cultured representative of unicellular algae (class Mamiellophyceae) that abound in oceans worldwide. Eight complete 13–22 Mb genomes of phylogenetically divergent species within this class are available, and their DNA sequences are nearly always present in metagenomic data produced from marine samples. Here we describe a simplified and robust transformation protocol for the smallest of these algae (O. tauri). Polyethylene glycol (PEG) treatment was much more efficient than the previously described electroporation protocol. Short (2 min or less) incubation times in PEG gave >104 transformants per microgram DNA. The time of cell recovery after transformation could be reduced to a few hours, permitting the experiment to be done in a day rather than overnight as used in previous protocols. DNA was randomly inserted in the O. tauri genome. In our hands PEG was 20–40-fold more efficient than electroporation for the transformation of O.
    [Show full text]
  • Genome Complexity in a Lean, Mean Photosynthetic Machine
    COMMENTARY Genome complexity in a lean, mean photosynthetic machine John M. Archibald* Canadian Institute for Advanced Research, Program in Evolutionary Biology, and Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, Canada B3H 1X5 hotosynthetic organisms come in et al. (1) weighs in at 12.56 Mbp, mak- all shapes and sizes. From a hu- ing it among the smallest, although not man perspective, the trees and the smallest, nuclear genome of a free- plants of dry land are the most living eukaryote characterized thus far Pconspicuous examples, but the next time [that honor belongs to the 9.2-Mbp ge- you admire a colorful tulip or marvel at nome of the fungus Ashbya gossypii the girth of a giant Sequoia, consider (14)]. The O. tauri genome is composed the following: Approximately half of the of 20 linear chromosomes between 1.07 oxygen we breathe is generated by single- and 0.16 Mbp (1) and, given its small celled photosynthesizers, phytoplankton, size, is remarkable in the number of adrift in the world’s oceans, invisible to genes it encodes: 8,166 protein-coding the naked eye and unfathomably large genes are predicted (6,265 by similarity in number, quietly harnessing solar en- to known genes), far more than in the ergy, fixing carbon dioxide, and produc- Ϸ16-Mbp genome of the red alga Cyan- ing oxygen by the bucket-load. In this idioschyzon merolae (5,331 genes) (15) issue of PNAS, Derelle et al. (1) present or in the Ϸ12-Mbp genome of the labo- the complete genome sequence of the ratory yeast Saccharomyces cerevisiae smallest of the small eukaryotic (nucle- (6,563 genes) (16).
    [Show full text]
  • Genome Analysis and Its Significance in Four Unicellular Algae
    J Plant Res (2008) 121:3–17 DOI 10.1007/s10265-007-0133-9 INVITED ARTICLE Genome analysis and its significance in four unicellular algae, Cyanidioshyzon merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana Osami Misumi Æ Yamato Yoshida Æ Keiji Nishida Æ Takayuki Fujiwara Æ Takayuki Sakajiri Æ Syunsuke Hirooka Æ Yoshiki Nishimura Æ Tsuneyoshi Kuroiwa Received: 5 October 2007 / Accepted: 30 October 2007 / Published online: 12 December 2007 Ó The Botanical Society of Japan and Springer 2007 Abstract Algae play a more important role than land In particular, examples of post-genome studies of organelle plants in the maintenance of the global environment and multiplication in C. merolae based on analyzed genome productivity. Progress in genome analyses of these organ- information are presented. isms means that we can now obtain information on algal genomes, global annotation and gene expression. The full Keywords Algae Á Genome Á Organelle Á Metabolism Á genome information for several algae has already been Photosynthetic organisms analyzed. Whole genomes of the red alga Cyanidioshyzon merolae, the green algae Ostreococcus tauri and Chla- mydomonas reinhardtii, and the diatom Thalassiosira Introduction pseudonana have been sequenced. Genome composition and the features of cells among the four algae were com- Algae are a highly diverse group of organisms that live in a pared. Each alga maintains basic genes as photosynthetic variety of environments, such as in oceans, in fresh water, eukaryotes and possesses additional gene groups to repre- in the soil, on ice, on rock, and so on. This characteristic sent their particular characteristics. This review discusses makes algae very suitable for studies concerning the and introduces the latest research that makes the best use of adaptation of organisms to different environments, and it the particular features of each organism and the signifi- provides the possibility of finding novel genes related to cance of genome analysis to study biological phenomena.
    [Show full text]
  • Cross-Exchange of B-Vitamins Underpins a Mutualistic Interaction Between Ostreococcus Tauri and Dinoroseobacter Shibae
    The ISME Journal (2019) 13:334–345 https://doi.org/10.1038/s41396-018-0274-y ARTICLE Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae 1,3 1,4 1,5 1 1 Matthew B. Cooper ● Elena Kazamia ● Katherine E. Helliwell ● Ulrich Johan Kudahl ● Andrew Sayer ● 2 1 Glen L. Wheeler ● Alison G. Smith Received: 23 April 2018 / Revised: 30 June 2018 / Accepted: 27 July 2018 / Published online: 18 September 2018 © International Society for Microbial Ecology 2018 Abstract Ostreococcus tauri, a picoeukaryotic alga that contributes significantly to primary production in oligotrophic waters, has a highly streamlined genome, lacking the genetic capacity to grow without the vitamins thiamine (B1) and cobalamin (B12). Here we demonstrate that the B12 and B1 auxotrophy of O. tauri can be alleviated by co-culturing with a heterotrophic bacterial partner Dinoroseobacter shibae, a member of the Rhodobacteraceae family of alpha-proteobacteria, genera of which are frequently found associated with marine algae. D. shibae lacks the complete pathway to synthesise three other B- vitamins: niacin (B3), biotin (B7), and p-aminobenzoic acid (a precursor for folate, B9), and the alga is in turn able to satisfy 1234567890();,: 1234567890();,: the reciprocal vitamin requirements of its bacterial partner in a stable long-term co-culture. Bioinformatics searches of 197 representative marine bacteria with sequenced genomes identified just nine species that had a similar combination of traits (ability to make vitamin B12, but missing one or more genes for niacin and biotin biosynthesis enzymes), all of which were from the Rhodobacteraceae. Further analysis of 70 species from this family revealed the majority encoded the B12 pathway, but only half were able to make niacin, and fewer than 13% biotin.
    [Show full text]
  • Genome Sequence of Ostreococcus Tauri Virus Otv-2 Throws Light on the Role of Picoeukaryote Niche Separation in the Oceanᰔ Karen D
    JOURNAL OF VIROLOGY, May 2011, p. 4520–4529 Vol. 85, No. 9 0022-538X/11/$12.00 doi:10.1128/JVI.02131-10 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Genome Sequence of Ostreococcus tauri Virus OtV-2 Throws Light on the Role of Picoeukaryote Niche Separation in the Oceanᰔ Karen D. Weynberg,1,2 Michael J. Allen,1 Ilana C. Gilg,3 David J. Scanlan,2 and William H. Wilson1,3* Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom1; School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom2; and Bigelow Laboratory for Ocean Sciences, Downloaded from 180 McKown Point, West Boothbay Harbor, Maine 04575-04753 Received 8 October 2010/Accepted 26 January 2011 Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Ostreococcus tauri virus (OtV) isolate OtV-2 is a large double-stranded DNA algal virus that infects a low-light-adapted strain of O. tauri and was assigned to the algal virus family Phycodnaviridae, genus Prasinovirus. Our working hypothesis for this study http://jvi.asm.org/ was that different viruses infecting high- versus low-light-adapted O. tauri strains would provide clues to propagation strategies that would give them selective advantages within their particular light niche.
    [Show full text]
  • Ecotype Diversity in the Marine Picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae)
    Blackwell Science, LtdOxford, UKEMIEnvironmental Microbiology 1462-2912Blackwell Publishing Ltd, 200476853859Original ArticleEcotype diversity in the picoeukaryote OstreococusF. Rodríguez et al. Environmental Microbiology (2005) 7(6), 853–859 doi:10.1111/j.1462-2920.2005.00758.x Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae) Francisco Rodríguez,1 Evelyne Derelle,2 significant role in biogeochemical processes, primary Laure Guillou,1 Florence Le Gall,1 Daniel Vaulot1 and productivity and food webs especially in oligotrophic Hervé Moreau2* areas, where it accounts typically for up to 80% of the 1Station Biologique, UMR 7127 CNRS/INSU/UPMC, BP autotrophic biomass (Campbell et al., 1994; Li, 1994; 74, 29682 Roscoff, France. Rocap et al., 2002). Over the past two decades, a large 2Laboratoire Arago, UMR 7628 CNRS/UPMC, BP44, body of knowledge has accumulated on the diversity and 66651, Banyuls-sur-mer, France. ecophysiology of the cyanobacterium Prochlorococcus (Partensky et al., 1999; Rocap et al., 2003). In particular, part of its global success has been attributed to the exist- Summary ence of distinct low- and high-light ecotypes, occupying The importance of the cyanobacteria Prochlorococ- different niches and exploiting different resources (Rocap cus and Synechococcus in marine ecosystems in et al., 2003). terms of abundance and primary production can be Picoeukaryotic cells have been initially detected by their partially explained by ecotypic differentiation. Despite characteristic flow cytometry and pigment signatures over the dominance of eukaryotes within photosynthetic large geographical and vertical scales (Andersen et al., picoplankton in many areas a similar differentiation 1996). However, the genetic and physiological traits that has never been evidenced for these organisms.
    [Show full text]
  • The Chloroplast Protein Translocation Complexes of Chlamydomonas
    Copyright Ó 2008 by the Genetics Society of America DOI: 10.1534/genetics.107.085704 The Chloroplast Protein Translocation Complexes of Chlamydomonas reinhardtii: A Bioinformatic Comparison of Toc and Tic Components in Plants, Green Algae and Red Algae Ming Kalanon and Geoffrey I. McFadden1 Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville, 3010 Victoria, Australia Manuscript received December 12, 2007 Accepted for publication March 19, 2008 ABSTRACT The recently completed genome of Chlamydomonas reinhardtii was surveyed for components of the chloroplast protein translocation complexes. Putative components were identified using reciprocal BlastP searches with the protein sequences of Arabidopsis thaliana as queries. As a comparison, we also surveyed the new genomes of the bryophyte Physcomitrella patens, two prasinophyte green algae (Ostreococcus lucimarinus and Ostreococcus tauri), the red alga Cyanidioschizon merolae, and several cyanobacteria. Overall, we found that the components of the import pathway are remarkably well conserved, particularly among the Viridiplantae lineages. Specifically, C. reinhardtii contained almost all the components found in A. thaliana, with two exceptions. Missing from C. reinhardtii are the C-terminal ferredoxin-NADPH-reductase (FNR) binding domain of Tic62 and a full-length, TPR-bearing Toc64. Further, the N-terminal domain of C. reinhardtii Toc34 is highly acidic, whereas the analogous region in C. reinhardtii Toc159 is not. This reversal of the vascular plant model may explain the similarity of C. reinhardtii chloroplast transit peptides to mitochondrial-targeting peptides. Other findings from our genome survey include the absence of Tic22 in both Ostreococcus genomes; the presence of only one Toc75 homolog in C.
    [Show full text]
  • Genome Analysis of the Smallest Free-Living Eukaryote Ostreococcus
    Genome analysis of the smallest free-living eukaryote SEE COMMENTARY Ostreococcus tauri unveils many unique features Evelyne Derellea,b, Conchita Ferrazb,c, Stephane Rombautsb,d, Pierre Rouze´ b,e, Alexandra Z. Wordenf, Steven Robbensd, Fre´ de´ ric Partenskyg, Sven Degroeved,h, Sophie Echeynie´ c, Richard Cookei, Yvan Saeysd, Jan Wuytsd, Kamel Jabbarij, Chris Bowlerk, Olivier Panaudi, BenoıˆtPie´ gui, Steven G. Ballk, Jean-Philippe Ralk, Franc¸ois-Yves Bougeta, Gwenael Piganeaua, Bernard De Baetsh, Andre´ Picarda,l, Michel Delsenyi, Jacques Demaillec, Yves Van de Peerd,m, and Herve´ Moreaua,m aObservatoire Oce´anologique, Laboratoire Arago, Unite´Mixte de Recherche 7628, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP44, 66651 Banyuls sur Mer Cedex, France; cInstitut de Ge´ne´ tique Humaine, Unite´Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 Rue de Cardonille, 34396 Montpellier Cedex 5, France; dDepartment of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology and eLaboratoire Associe´de l’Institut National de la Recherche Agronomique (France), Ghent University, Technologiepark 927, 9052 Ghent, Belgium; fRosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149; gStation Biologique, Unite´Mixte de Recherche 7144, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP74, 29682 Roscoff Cedex, France; hDepartment of Applied Mathematics, Biometrics and
    [Show full text]