H.265/HEVC Video Transmission Over 4G Cellular Networks

Total Page:16

File Type:pdf, Size:1020Kb

H.265/HEVC Video Transmission Over 4G Cellular Networks H.265/HEVC video transmission over 4G cellular networks by Aman Jassal Dipl.Ing., Ecole Sup´erieured'Ing´enieursen Informatique et G´eniedes T´el´ecommunications, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in The Faculty of Graduate and Postdoctoral Studies (Electrical and Computer Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2016 c Aman Jassal 2016 Abstract Long Term Evolution has been standardized by the 3GPP consortium since 2008, with 3GPP Release 12 being the latest iteration of LTE Advanced, which was finalized in March 2015. High Efficiency Video Coding has been standardized by the Moving Picture Experts Group since 2012 and is the video compression technology targeted to deliver High-Definition video con- tent to users. With video traffic projected to represent the lion's share of mobile data traffic in the next few years, providing video and non-video users with high Quality of Experience is key to designing 4G systems and future 5G systems. In this thesis, we present a cross-layer scheduling framework which de- livers video content to video users by exploiting encoding features used by the High Efficiency Video Coding standard such as coding structures and motion compensated prediction. We determine which frames are referenced the most within the coded video bitstream to determine which frames have higher utility for the High Efficiency Video Coding decoder located at the user's device and evaluate the performances of best effort and video users in 4G networks using finite buffer traffic models. We look into throughput performance for best effort users and packet loss performance for video users to assess Quality of Experience. Our results demonstrate that there is sig- ii Abstract nificant potential to improve the Quality of Experience of best effort and video users using our proposed Frame Reference Aware Proportional Fair scheme compared to the baseline Proportional Fair scheme. iii Preface I hereby declare that I am the author of this thesis. This thesis is an original, unpublished work under the supervision of Dr. Cyril Leung. In this work, I played the primary role in designing and performing the research, doing data analysis and preparing the manuscript under the supervision of Dr. Cyril Leung. iv Table of Contents Abstract ................................. ii Preface .................................. iv Table of Contents ............................ v List of Tables .............................. vii List of Figures . viii List of Acronyms ............................ xii Acknowledgements . xiii Dedication ................................xiv 1 Introduction ............................. 1 2 Basics of H.265/HEVC ...................... 4 2.1 Syntax Structures and Syntax Elements . 4 2.2 Coding Structures and Reference Picture Lists . 7 2.2.1 Coding Structures . 8 2.2.2 Reference Picture Lists . 10 v Table of Contents 2.3 Motion Compensated Prediction . 13 2.4 Operation with Networking Layers . 15 3 Cross-Layer Frame Reference Aware Scheduling Framework 18 3.1 Mathematical Formulation of the Shared Resource Allocation Problem . 19 3.2 Solution to the proposed Shared Resource Allocation Problem 25 4 System Model ............................ 28 4.1 H.265/HEVC Video Content Generation . 28 4.2 LTE-Advanced System Model . 30 4.2.1 Network Model . 30 4.2.2 Traffic Model . 34 4.2.3 Channel Model . 35 4.2.4 Feedback Model . 40 5 Simulation Results and Analysis . 42 5.1 Simulation Assumptions . 43 5.2 Simulation Results and Discussion . 48 5.2.1 Results for video users . 49 5.2.2 Results for Best Effort users . 54 6 Conclusions and Future Work . 60 6.1 Contributions . 60 6.2 Future Work . 61 Bibliography ............................... 64 vi List of Tables 2.1 Generic NAL unit syntax, adapted from [3] . 5 2.2 Reference Picture Sets for the Hierarchical-B Coding Struc- ture of GOP-size 8 . 11 2.3 Reference Picture Lists for the Hierarchical-B Coding Struc- ture of GOP-size 8 . 13 4.1 H.265/HEVC Table of Video Test Sequences . 28 4.2 H.265/HEVC Parameters . 30 4.3 FTP Traffic Model 1 . 33 4.4 H.265/HEVC Traffic Model . 35 5.1 LTE-Advanced Parameters . 46 5.2 Offered Load and corresponding Resource Utilization . 49 vii List of Figures 2.1 Frame dependencies in the reference coding structure. 9 2.2 Uni- and bi-predictive inter-prediction illustration from adja- cent pictures, adapted from [4] . 14 2.3 RTP Single NAL unit packet structure . 16 2.4 H.265/HEVC system layer stack . 17 4.1 Hexagonal Network Grid Layout . 31 4.2 Wrap Around of Hexagonal Network . 32 4.3 LTE Downlink PRB allocation illustration . 33 5.1 Video users' active download time . 50 5.2 Satisfied Video User Percentage . 51 5.3 CRA LDU Loss Ratio . 53 5.4 Average throughput for Best Effort users . 55 5.5 Coverage throughput for Best Effort users . 56 5.6 Illustration of the outer 10% of the coverage area . 57 5.7 Average BE user throughput in Cell-Edge region . 58 viii List of Acronyms 3GPP Third Generation Partnership Project. ADT Active Download Time. BE Best Effort. CB Coding Block. CDF Cumulative Distribution Function. CQI Channel Quality Indicator. CSI Channel State Information. CVS Coded Video Sequence. DASH Dynamic Adaptive Streaming over HTTP. EESM Exponential Effective SNR Mapping. FDD Frequency Division Duplex. GOP Group of Pictures. ix List of Acronyms H.264/AVC Advanced Video Coding. H.265/HEVC High Efficiency Video Coding. HTTP Hypertext Transfer Protocol. IETF Internet Engineering Task Force. IP Internet Protocol. ITU-R International Telecommunications Union Radiocommunications Sec- tor. JCT-VC Joint Collaborative Team on Video Coding. KPIs Key Performance Indicators. LDU Logical Data Unit. LTE Long Term Evolution. LTE-A LTE Advanced. MANE Media Aware Network Element. MIESM Mutual Information Effective SNR Metric. MIMO Multiple Input Multiple Output. MOS Mean Opinion Score. MPEG Moving Picture Experts Group. x List of Acronyms MU-MIMO Multi User Multiple Input Multiple Output. NAL Network Abstraction Layer. NGMN Next Generation Mobile Networks. OFDMA Orthogonal Frequency Division Multiple Access. OSI Open Systems Interconnection. PB Prediction Block. PLR Packet Loss Ratio. PMI Precoding Matrix Indicator. POC Picture Order Count. PRB Physical Resource Block. QAM Quadrature Amplitude Modulation. QoE Quality of Experience. QoS Quality of Service. QPSK Quaternary Phase Shift Keying. RBSP Raw Byte Sequence Payload. RI Rank Indication. RTP Real Time Protocol. xi List of Acronyms RU Resource Utilization. SINR Signal to Interference and Noise Ratio. SNR Signal to Noise Ratio. SRST Single RTP stream on a single media transport. SU-MIMO Single User Multiple Input Multiple Output. TCP Transmission Control Protocol. UDP User Datagram Protocol. UMTS Universal Mobile Telecommunications System. VCL Video Coding Layer. Wi-Fi Wireless Fidelity. xii Acknowledgements I would like to take this opportunity to express my utmost gratitude and sincerest thanks to my supervisor, Dr. Cyril Leung, who has given me great support, encouragement and guidance throughout my work and my M.A.Sc program. My discussions with him were a constant source of inspiration and his insights helped make this research work more valuable. Without his invaluable knowledge and understanding in this research area, this thesis would have never been possible. I would also like to thank Dr. Ahmed Saadani for his guidance and support throughout my engineering program and at Orange Labs where he gave me the opportunity to do research work on 4G systems. My former colleagues, Mr. Sebastien Jeux and Dr. Sofia Martinez Lopez, and more generally all the research community involved in research and standardiza- tion with the 3GPP, have had a great influence on me and without their inspiration I would have never undertaken my program at the University of British Columbia. All of the work that has been done in this thesis was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada under Grant RGPIN 1731-2013. xiii Dedication To my parents and my sister xiv Chapter 1 Introduction With the emergence of Long Term Evolution (LTE) and its subsequent it- erations standardized by the Third Generation Partnership Project (3GPP) consortium, video services are fast becoming the dominant data services in 4G mobile networks and mobile video traffic is projected to account for 72% of the total mobile data traffic by 2019 [1]. The transmission of video services over cellular networks is challenging due to the large bandwidth requirement, the low latency required due to protocol stack inter-operation and the effect of error propagation within the video sequence in the event of packet losses. The current dominant standard for video coding is Ad- vanced Video Coding (H.264/AVC) [2] and is used to deliver a wide range of video services. However, H.264/AVC requires extremely high bandwidth, making the delivery of High-Definition (HD) video services impractical. Its successor, High Efficiency Video Coding (H.265/HEVC) [3], was standard- ized by the Moving Picture Experts Group (MPEG) in 2012 and is expected to reduce the bit rate compared to H.264 High Profile by about 50% while maintaining comparable subjective quality [4]. Therefore H.265/HEVC is a more practical choice for delivering HD and Ultra High-Definition (UHD) video content to consumers using wired and wireless networks. 1 Chapter 1. Introduction As we move towards 5G, one of the key targets that we need to achieve is to provide a more consistent user experience across the whole network as well as higher Quality of Experience (QoE) [5]. Cross-layer QoE-aware resource allocation schemes have been proposed for Orthogonal Frequency Division Multiple Access (OFDMA) systems [6], where the scheduling al- gorithm uses the Mean Opinion Score (MOS) as a way to provide QoE. Other attributes that the research community has been focusing on in order to improve the QoE of video users are the playback buffer status and the rebuffering time [7]-[8].
Recommended publications
  • ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 422-426 RESEARCH ARTICLE
    ISSN: 2320-5407 Int. J. Adv. Res. 5(4), 422-426 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3826 DOI URL: http://dx.doi.org/10.21474/IJAR01/3826 RESEARCH ARTICLE CHALLENGING ISSUES IN OSI AND TCP/IP MODEL. Dr. J. VijiPriya, Samina and Zahida. College of Computer Science and Engineering, University of Hail, Saudi Arabia. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History A computer network is a connection of network devices to data communication. Multiple networks are connected together to form an Received: 06 February 2017 internetwork. The challenges of Internetworking is interoperating Final Accepted: 05 March 2017 between products from different manufacturers requires consistent Published: April 2017 standards. Network reference models were developed to address these challenges. Two useful reference models are Open System Key words:- Interconnection (OSI) and Transmission Control Protocol and Internet OSI, TCP/IP, Data Communication, Protocol (TCP/IP) serve as protocol architecture details the Protocols, Layers, and Encapsulation communication between applications on network devices. This paper depicts the OSI and TCP/IP models, their issues and comparison of them. Copy Right, IJAR, 2017,. All rights reserved. …………………………………………………………………………………………………….... Introduction:- Network reference models are called protocol architecture in which task of communication can be broken into sub tasks. These tasks are organized into layers representing network services and functions. The layered protocols are rules that govern end-to-end communication between devices. Protocols on each layer will interact with protocols on the above and below layers of it that form a protocol suite or stack. The most established TCP/IP suite was developed by Department of Defence's Project Research Agency DARPA based on OSI suite to the foundation of Internet architecture.
    [Show full text]
  • Versatile Video Coding – the Next-Generation Video Standard of the Joint Video Experts Team
    31.07.2018 Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team Mile High Video Workshop, Denver July 31, 2018 Gary J. Sullivan, JVET co-chair Acknowledgement: Presentation prepared with Jens-Rainer Ohm and Mathias Wien, Institute of Communication Engineering, RWTH Aachen University 1. Introduction Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team 1 31.07.2018 Video coding standardization organisations • ISO/IEC MPEG = “Moving Picture Experts Group” (ISO/IEC JTC 1/SC 29/WG 11 = International Standardization Organization and International Electrotechnical Commission, Joint Technical Committee 1, Subcommittee 29, Working Group 11) • ITU-T VCEG = “Video Coding Experts Group” (ITU-T SG16/Q6 = International Telecommunications Union – Telecommunications Standardization Sector (ITU-T, a United Nations Organization, formerly CCITT), Study Group 16, Working Party 3, Question 6) • JVT = “Joint Video Team” collaborative team of MPEG & VCEG, responsible for developing AVC (discontinued in 2009) • JCT-VC = “Joint Collaborative Team on Video Coding” team of MPEG & VCEG , responsible for developing HEVC (established January 2010) • JVET = “Joint Video Experts Team” responsible for developing VVC (established Oct. 2015) – previously called “Joint Video Exploration Team” 3 Versatile Video Coding – The Next-Generation Video Standard of the Joint Video Experts Team Gary Sullivan | Jens-Rainer Ohm | Mathias Wien | July 31, 2018 History of international video coding standardization
    [Show full text]
  • RT-ROS: a Real-Time ROS Architecture on Multi-Core Processors
    Future Generation Computer Systems 56 (2016) 171–178 Contents lists available at ScienceDirect Future Generation Computer Systems journal homepage: www.elsevier.com/locate/fgcs RT-ROS: A real-time ROS architecture on multi-core processors Hongxing Wei a,1, Zhenzhou Shao b, Zhen Huang a, Renhai Chen d, Yong Guan b, Jindong Tan c,1, Zili Shao d,∗,1 a School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, PR China b College of Information Engineering, Capital Normal University, Beijing, 100048, PR China c Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, 37996-2110, USA d Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China article info a b s t r a c t Article history: ROS, an open-source robot operating system, is widely used and rapidly developed in the robotics Received 6 February 2015 community. However, running on Linux, ROS does not provide real-time guarantees, while real-time tasks Received in revised form are required in many robot applications such as robot motion control. This paper for the first time presents 20 April 2015 a real-time ROS architecture called RT-RTOS on multi-core processors. RT-ROS provides an integrated Accepted 12 May 2015 real-time/non-real-time task execution environment so real-time and non-real-time ROS nodes can be Available online 9 June 2015 separately run on a real-time OS and Linux, respectively, with different processor cores. In such a way, real-time tasks can be supported by real-time ROS nodes on a real-time OS, while non-real-time ROS nodes Keywords: Real-time operating systems on Linux can provide other functions of ROS.
    [Show full text]
  • OSI Model and Network Protocols
    CHAPTER4 FOUR OSI Model and Network Protocols Objectives 1.1 Explain the function of common networking protocols . TCP . FTP . UDP . TCP/IP suite . DHCP . TFTP . DNS . HTTP(S) . ARP . SIP (VoIP) . RTP (VoIP) . SSH . POP3 . NTP . IMAP4 . Telnet . SMTP . SNMP2/3 . ICMP . IGMP . TLS 134 Chapter 4: OSI Model and Network Protocols 4.1 Explain the function of each layer of the OSI model . Layer 1 – physical . Layer 2 – data link . Layer 3 – network . Layer 4 – transport . Layer 5 – session . Layer 6 – presentation . Layer 7 – application What You Need To Know . Identify the seven layers of the OSI model. Identify the function of each layer of the OSI model. Identify the layer at which networking devices function. Identify the function of various networking protocols. Introduction One of the most important networking concepts to understand is the Open Systems Interconnect (OSI) reference model. This conceptual model, created by the International Organization for Standardization (ISO) in 1978 and revised in 1984, describes a network architecture that allows data to be passed between computer systems. This chapter looks at the OSI model and describes how it relates to real-world networking. It also examines how common network devices relate to the OSI model. Even though the OSI model is conceptual, an appreciation of its purpose and function can help you better understand how protocol suites and network architectures work in practical applications. The OSI Seven-Layer Model As shown in Figure 4.1, the OSI reference model is built, bottom to top, in the following order: physical, data link, network, transport, session, presentation, and application.
    [Show full text]
  • Fedramp Master Acronym and Glossary Document
    FedRAMP Master Acronym and Glossary Version 1.6 07/23/2020 i​[email protected] fedramp.gov Master Acronyms and Glossary DOCUMENT REVISION HISTORY Date Version Page(s) Description Author 09/10/2015 1.0 All Initial issue FedRAMP PMO 04/06/2016 1.1 All Addressed minor corrections FedRAMP PMO throughout document 08/30/2016 1.2 All Added Glossary and additional FedRAMP PMO acronyms from all FedRAMP templates and documents 04/06/2017 1.2 Cover Updated FedRAMP logo FedRAMP PMO 11/10/2017 1.3 All Addressed minor corrections FedRAMP PMO throughout document 11/20/2017 1.4 All Updated to latest FedRAMP FedRAMP PMO template format 07/01/2019 1.5 All Updated Glossary and Acronyms FedRAMP PMO list to reflect current FedRAMP template and document terminology 07/01/2020 1.6 All Updated to align with terminology FedRAMP PMO found in current FedRAMP templates and documents fedramp.gov page 1 Master Acronyms and Glossary TABLE OF CONTENTS About This Document 1 Who Should Use This Document 1 How To Contact Us 1 Acronyms 1 Glossary 15 fedramp.gov page 2 Master Acronyms and Glossary About This Document This document provides a list of acronyms used in FedRAMP documents and templates, as well as a glossary. There is nothing to fill out in this document. Who Should Use This Document This document is intended to be used by individuals who use FedRAMP documents and templates. How To Contact Us Questions about FedRAMP, or this document, should be directed to ​[email protected]​. For more information about FedRAMP, visit the website at ​https://www.fedramp.gov​.
    [Show full text]
  • A Comparative Evaluation of OSI and TCP/IP Models
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 A Comparative Evaluation of OSI and TCP/IP Models P. Ravali Department of Computer Science and Engineering, Amrita Vishwa Vidhyapeetham, Bengaluru Abstract: Networking can be done in a layered manner. To reduce design complexities, network designers organize protocols. Every layer follows a protocol to communicate with the client and the server end systems. There is a piece of layer n in each of the network entities. These pieces communicate with each other by exchanging messages. These messages are called as layer-n protocol data units [n-PDU]. All the processes required for effective communication are addressed and are divided into logical groups called layers. When a communication system is designed in this manner, it is known as layered architecture. The OSI model is a set of guidelines that network designers used to create and implement application that run on a network. It also provides a framework for creating and implementing networking standards, devices, and internetworking schemes. This paper explains the differences between the TCP/IP Model and OSI Reference Model, which comprises of seven layers and five different layers respectively. Each layer has its own responsibilities. The TCP/IP reference model is a solid foundation for all of the communication tasks on the Internet. Keywords: TCP/IP, OSI, Networking 1. Introduction Data formats for data exchange where digital bit strings are exchanged. A collection of autonomous computers interconnected by a Address mapping. single technology is called as computer networks.
    [Show full text]
  • Security Solutions Y in MPEG Family of MPEG Family of Standards
    1 Security solutions in MPEG family of standards TdjEbhiiTouradj Ebrahimi [email protected] NET working? Broadcast Networks and their security 16-17 June 2004, Geneva, Switzerland MPEG: Moving Picture Experts Group 2 • MPEG-1 (1992): MP3, Video CD, first generation set-top box, … • MPEG-2 (1994): Digital TV, HDTV, DVD, DVB, Professional, … • MPEG-4 (1998, 99, ongoing): Coding of Audiovisual Objects • MPEG-7 (2001, ongo ing ): DitiDescription of Multimedia Content • MPEG-21 (2002, ongoing): Multimedia Framework NET working? Broadcast Networks and their security 16-17 June 2004, Geneva, Switzerland MPEG-1 - ISO/IEC 11172:1992 3 • Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 1 Systems - Program Stream – Part 2 Video – Part 3 Audio – Part 4 Conformance – Part 5 Reference software NET working? Broadcast Networks and their security 16-17 June 2004, Geneva, Switzerland MPEG-2 - ISO/IEC 13818:1994 4 • Generic coding of moving pictures and associated audio – Part 1 Systems - joint with ITU – Part 2 Video - joint with ITU – Part 3 Audio – Part 4 Conformance – Part 5 Reference software – Part 6 DSM CC – Par t 7 AAC - Advance d Au dio Co ding – Part 9 RTI - Real Time Interface – Part 10 Conformance extension - DSM-CC – Part 11 IPMP on MPEG-2 Systems NET working? Broadcast Networks and their security 16-17 June 2004, Geneva, Switzerland MPEG-4 - ISO/IEC 14496:1998 5 • Coding of audio-visual objects – Part 1 Systems – Part 2 Visual – Part 3 Audio – Part 4 Conformance – Part 5 Reference
    [Show full text]
  • Internet of Things (Iot): Protocols White Paper
    INTERNET OF THINGS (IOT): PROTOCOLS WHITE PAPER 11 December 2020 Version 1 1 Hospitality Technology Next Generation Internet of Things (IoT) Security White Paper 11 December 2020 Version 1 About HTNG Hospitality Technology Next Generation (HTNG) is a non-profit association with a mission to foster, through collaboration and partnership, the development of next-generation systems and solutions that will enable hoteliers and their technology vendors to do business globally in the 21st century. HTNG is recognized as the leading voice of the global hotel community, articulating the technology requirements of hotel companies of all sizes to the vendor community. HTNG facilitate the development of technology models for hospitality that will foster innovation, improve the guest experience, increase the effectiveness and efficiency of hotels, and create a healthy ecosystem of technology suppliers. Copyright 2020, Hospitality Technology Next Generation All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner. For any software code contained within this specification, permission is hereby granted, free-of-charge, to any person obtaining a copy of this specification (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the above copyright notice and this permission notice being included in all copies or substantial portions of the Software.
    [Show full text]
  • The OSI Model: Understanding the Seven Layers of Computer Networks
    Expert Reference Series of White Papers The OSI Model: Understanding the Seven Layers of Computer Networks 1-800-COURSES www.globalknowledge.com The OSI Model: Understanding the Seven Layers of Computer Networks Paul Simoneau, Global Knowledge Course Director, Network+, CCNA, CTP Introduction The Open Systems Interconnection (OSI) model is a reference tool for understanding data communications between any two networked systems. It divides the communications processes into seven layers. Each layer both performs specific functions to support the layers above it and offers services to the layers below it. The three lowest layers focus on passing traffic through the network to an end system. The top four layers come into play in the end system to complete the process. This white paper will provide you with an understanding of each of the seven layers, including their functions and their relationships to each other. This will provide you with an overview of the network process, which can then act as a framework for understanding the details of computer networking. Since the discussion of networking often includes talk of “extra layers”, this paper will address these unofficial layers as well. Finally, this paper will draw comparisons between the theoretical OSI model and the functional TCP/IP model. Although TCP/IP has been used for network communications before the adoption of the OSI model, it supports the same functions and features in a differently layered arrangement. An Overview of the OSI Model Copyright ©2006 Global Knowledge Training LLC. All rights reserved. Page 2 A networking model offers a generic means to separate computer networking functions into multiple layers.
    [Show full text]
  • The H.264 Advanced Video Coding (AVC) Standard
    Whitepaper: The H.264 Advanced Video Coding (AVC) Standard What It Means to Web Camera Performance Introduction A new generation of webcams is hitting the market that makes video conferencing a more lifelike experience for users, thanks to adoption of the breakthrough H.264 standard. This white paper explains some of the key benefits of H.264 encoding and why cameras with this technology should be on the shopping list of every business. The Need for Compression Today, Internet connection rates average in the range of a few megabits per second. While VGA video requires 147 megabits per second (Mbps) of data, full high definition (HD) 1080p video requires almost one gigabit per second of data, as illustrated in Table 1. Table 1. Display Resolution Format Comparison Format Horizontal Pixels Vertical Lines Pixels Megabits per second (Mbps) QVGA 320 240 76,800 37 VGA 640 480 307,200 147 720p 1280 720 921,600 442 1080p 1920 1080 2,073,600 995 Video Compression Techniques Digital video streams, especially at high definition (HD) resolution, represent huge amounts of data. In order to achieve real-time HD resolution over typical Internet connection bandwidths, video compression is required. The amount of compression required to transmit 1080p video over a three megabits per second link is 332:1! Video compression techniques use mathematical algorithms to reduce the amount of data needed to transmit or store video. Lossless Compression Lossless compression changes how data is stored without resulting in any loss of information. Zip files are losslessly compressed so that when they are unzipped, the original files are recovered.
    [Show full text]
  • 1.2. OSI Model
    1.2. OSI Model The OSI model classifies and organizes the tasks that hosts perform to prepare data for transport across the network. You should be familiar with the OSI model because it is the most widely used method for understanding and talking about network communications. However, remember that it is only a theoretical model that defines standards for programmers and network administrators, not a model of actual physical layers. Using the OSI model to discuss networking concepts has the following advantages: Provides a common language or reference point between network professionals Divides networking tasks into logical layers for easier comprehension Allows specialization of features at different levels Aids in troubleshooting Promotes standards interoperability between networks and devices Provides modularity in networking features (developers can change features without changing the entire approach) However, you must remember the following limitations of the OSI model: OSI layers are theoretical and do not actually perform real functions. Industry implementations rarely have a layer‐to‐layer correspondence with the OSI layers. Different protocols within the stack perform different functions that help send or receive the overall message. A particular protocol implementation may not represent every OSI layer (or may spread across multiple layers). To help remember the layer names of the OSI model, try the following mnemonic devices: Mnemonic Mnemonic Layer Name (Bottom to top) (Top to bottom) Layer 7 Application Away All Layer 6 Presentation Pizza People Layer 5 Session Sausage Seem Layer 4 Transport Throw To Layer 3 Network Not Need Layer 2 Data Link Do Data Layer 1 Physical Please Processing Have some fun and come up with your own mnemonic for the OSI model, but stick to just one so you don't get confused.
    [Show full text]
  • ITC Confplanner DVD Pages Itcconfplanner
    Comparative Analysis of H.264 and Motion- JPEG2000 Compression for Video Telemetry Item Type text; Proceedings Authors Hallamasek, Kurt; Hallamasek, Karen; Schwagler, Brad; Oxley, Les Publisher International Foundation for Telemetering Journal International Telemetering Conference Proceedings Rights Copyright © held by the author; distribution rights International Foundation for Telemetering Download date 25/09/2021 09:57:28 Link to Item http://hdl.handle.net/10150/581732 COMPARATIVE ANALYSIS OF H.264 AND MOTION-JPEG2000 COMPRESSION FOR VIDEO TELEMETRY Kurt Hallamasek, Karen Hallamasek, Brad Schwagler, Les Oxley [email protected] Ampex Data Systems Corporation Redwood City, CA USA ABSTRACT The H.264/AVC standard, popular in commercial video recording and distribution, has also been widely adopted for high-definition video compression in Intelligence, Surveillance and Reconnaissance and for Flight Test applications. H.264/AVC is the most modern and bandwidth-efficient compression algorithm specified for video recording in the Digital Recording IRIG Standard 106-11, Chapter 10. This bandwidth efficiency is largely derived from the inter-frame compression component of the standard. Motion JPEG-2000 compression is often considered for cockpit display recording, due to the concern that details in the symbols and graphics suffer excessively from artifacts of inter-frame compression and that critical information might be lost. In this paper, we report on a quantitative comparison of H.264/AVC and Motion JPEG-2000 encoding for HD video telemetry. Actual encoder implementations in video recorder products are used for the comparison. INTRODUCTION The phenomenal advances in video compression over the last two decades have made it possible to compress the bit rate of a video stream of imagery acquired at 24-bits per pixel (8-bits for each of the red, green and blue components) with a rate of a fraction of a bit per pixel.
    [Show full text]