ALGEBRAIC GEOMETRY AND PROJECTIVE DIFFERENTIAL GEOMETRY SEOUL NATIONAL UNIVERSITY CONCENTRATED LECTURE SERIES, 1997 J.M. Landsberg September, 1998 Contents. 0. Introduction 1. Examples of homogeneous varieties 2. Auxilliary varieties 3. Topology and consequences 4. Projective differential invariants 5. Varieties with degenerate Gauss images 6. When can a uniruled variety be smooth? 7. Dual varieties 8. Linear systems of bounded and constant rank 9. Secant and tangential varieties 10. Systems of quadrics with tangential defects 11. Recognizing uniruled varieties 12. Recognizing intersections of quadrics 13. Recognizing homogeneous spaces 14. Complete intersections 15. Errata and clarifications Preface. Please note: This is a preliminary version, the final version will be published in book arXiv:math/9809184v1 [math.AG] 30 Sep 1998 form by Seoul National University. Please send comments, corrections and questions to me at
[email protected]. I am particularly interested in historical comments, as I have been unable to trace the original authorship of several results (those marked with a ??). 1991 Mathematics Subject Classification. primary 53, secondary 14. Key words and phrases. complete intersections, dual varieties, Gauss maps, homogeneous varieties, moving frames, osculating spaces, projective differential geometry, ruled varieties, secant varieties, second fundamental forms, spinor varieties, tangential varieties . Supported by NSF grant DMS-9303704. Typeset by AMS-TEX 1 2 J.M. LANDSBERG This is an expanded and updated version of a lecture series I gave at Seoul National University in September 1997. The series was focus on Zak’s theorem on Severi varieties and my differential-geometric proof of the theorem at the request of my hosts. A French language version of the introduction served as the text for my habilitation `adiriger des recherches (November 1997).