HDR Cameras Linear and Non-Linear

Total Page:16

File Type:pdf, Size:1020Kb

HDR Cameras Linear and Non-Linear HDR Cameras Linear and non-linear Jari Löytömäki JAI Finland May, 2014 GLOBAL REACH… worldwide operational and commercial presence with distribution to more than 40 countries RESEARCH & DEVELOPMENT a unique blend of technologies & competencies • Area scan and line scan camera technology. • Analogue-to-digital circuit design. • Software engineering. • Image pre-processing techniques. • High-speed interfaces. • Optical knowledge. • Imager and multi-imager technology. CCD/ 2CCD 3CCD 3CMOS 4CCD 4CMOS CMOS HDR IMAGING TECHNOLOGY Industrial imaging – non-cooled imaging High Dynamic Range Imaging (HDR) Contents • Large pixels – Area – Full well capacity – Binning • Multi-images – Sequential – Instantaneous • CMOS multi-slope 4 WHY HIGH DYNAMIC RANGE? Imagers show limited dynamic range: 5 WHY HIGH DYNAMICS RANGE? Extended dynamic range: Image fusion, multi-slope or perhaps a large pixel well with low noise. 6 APPLICATION SLIDES Static and dynamic applications Medical imaging ITS PCB inspection Film scanning Print inspection Glass inspection Device inspection Aerial photography Vegetation analysis 7 DYNAMIC RANGE Definition The imager dynamic range is given by Nsat 퐷푅 = 20 log [푑퐵] Ndark Nsat Nsat: The amount of electrons collected at pixel saturation level Ndark: The pixel noise in electrons in dark Ndark 8 DYNAMIC RANGE Non-cooled imagers Dominating factors • For low light – Imager noise and readout noise dominates – To improve optimize: QE, Pixel Area, Imager Noise, Readout Noise • For bright light – Photon and shot noise dominate – To improve optimize: QE, FWC (Pixel Size) 9 LARGE PIXELS • One readout amplifier per pixel • Better response (sensitivity) – Larger surface area collects more light with same lens F-number • Larger pixel well capacity pixel size [ µm ] 3.5 5 7 10 14 20 pixel area [ µm² ] 12 25 49 100 196 400 10 SWEEP SERIES SW-2000 SW-2000 key features High sensitivity monochrome CMOS line scan camera: • Based on custom CMOS sensor • Resolution 2048 pixels • Pixel size 20 µm x 20 µm – 60 ke- (responsive mode) – 360 ke- (high DR mode) • Maximum line rate 80 klines@12 bit output • Camera Link, CoaXPress or GigE interface • Camera settings through interface or Ethernet port 11 TWO IMAGER MODES Increasing the image contrast in low light scenes HIGH DYNAMIC RANGE MODE RESPONSIVE MODE 8-bit depth - - Quantum Well (360 ke ) resolution Quantum Well (60 ke ) 100% white 255 0 100% black BETTER IMAGE CONTAST IN LOW LIGHT SCENES 12 TWO SENSOR OPERATION MODE Increasing the image contrast for bright scenes HIGH DYNAMIC RANGE MODE RESPONSIVE MODE Quantum Well (360 ke-) Quantum Well (60 ke-) Noise level 13 PIXEL BINNING Trend is towards smaller pixels but… JAI SPARK-5000 CMOS HW binning • Down to one readout AMP per binned pixel 1 • 2x2 binning: down to readout noise 2푥2 Digital binning • One readout AMP per pixel 1 • 2x2 binning: down to readout noise 2푥2 14 SPARK SERIES SP-5000 SP-5000 key features 5 MP 2560 x 2048 Up to 250 FPS* 1” CMOS 5.0 µm pixels Key features: Global shutter . ALC - automatic level controlled exposure mode *134 fps for PMCL . Built-in LUT for gamma and other transformations . On-chip binning and multi-ROI functions . Selectable P-iris or 3-axis analog lens control standard . In-camera CMOS pattern corrections -> Better image quality . Auto-scaling A/D front-end -> Better control over light . 4-channel analog gain section for individual Bayer color control -> Better color control . Color and Monochrome versions . Multiple interfaces -> More choices to fit application requirements 15 MULTIPLE EXPOSURES • HDR mode (high dynamic range) – by adjusting the exposure separately for two images it is possible to resolve +16 bit by image fusion with good precision dependent on the brightness of the object. 16 MULTIPLE EXPOSURES Single imager Sequentially recording requires static or semi-static object Two or more images shifted in time – color or monochrome - with different • Exposure (linear) • Gain • Lighting Followed by image fusion Up to 10 settings in non-volatile memory 17 ELITE SERIES EL-2800 Lowest noise and highest sensitivity KEY FEATURES AT A GLANCE • High speed CCD with excellent image quality. 2.8 MP 1920 x 1440 • Low noise operation. 54.7 FPS • Increased sensitivity and better NIR response. 2/3” quad-tap CCD • ALC (Auto Level Control) and P-iris control. EXview HAD II • Programmable 3-axis control for zoom, focus and iris. • 8/10/12 –bit depth. • 3 x 8 (24-bit) in-camera color interpolation. (@ 15 fps). • Horizontal and vertical binning modes for enhanced sensitivity. Based on Sony ICX674 • HD-mode. latest EXview HAD CCD II Technology. • Exposure from 1/100,000 to 8 seconds. Color & Monochrome versions • LUT, gamma compensation, shading correction, blemish compensation and more. • Common JAI SDK and Control Tool. 18 MULTIPLE EXPOSURES Multi-imager Instantaneous recording - works with moving objects Prism Two images acquired simultaneously - color or monochrome - with different • Exposure (linear) • Gain Followed by image fusion 19 MULTIPLE EXPOSURES 2-CCD/CMOS prism Prism filter characteristics Visible 1 (transmission) Visible 2 (reflection) 20 MULTIPLE EXPOSURE 2-CCD camera AD-132GE • 2-CCD high dynamic range color camera • Two Bayer color CCDs (1/3”) mounted on an optical prism • 1296 x 966 active pixels per channel • Choice of built-in image fusion or SDK post processing routines to achieve nearly 120 dB dynamic range • 31 fps operation for HDR • Separate high-speed (62 fps) and high S/N modes also included • GigE Vision/GenICam compliant with 8-bit, 10-bit, or 12-bit per channel output • Programmable exposure from 11.49 µs to 31.761 ms in one-line increments • Auto shutter from 1/31 to 1/366 s • Analog video output for auto-iris lens control • Programmable 25-in/14-out GPIO module 21 CMOS HDR mode Linear response Saturation level Output signal Output # of photons 22 CMOS HDR mode Linear response Saturation level Output signal Output # of photons 23 CMOS HDR mode Piecewise linear response – “multi slope mode” Saturation level Kneepoint Output signal Output Slope 2 # of photons 24 CMOS HDR mode Piecewise linear response – “multi slope mode” Saturation level Kneepoint Slope 3 What about color? Kneepoint Output signal Output Slope 2 # of photons 25 Original HDR FUNCTION* SP-20000 scene Increasing the dynamic range with multi slope Pixel reset Pixel sample Vhigh Exposure time is set so pixels get enough light to see details in the darker areas of the scene. In areas where Vlevel-slope2 pixels are receiving more light with risk of Blue line pixel saturation, the Represents a pixel exposure time is on which less light is falling. restricted with the Red line Vlevel-slope3 dual slope function. Represents a pixel on which a large amount of light is falling. Red dotted line Part of image with pixel saturation if not corrected. Vlow Exposure 1st kneepoint Exposure 2nd kneepoint Total exposure time Resulting HDR image *Monochrome only 26 SPARK SERIES SP-20000 SP-20000 key features Key features: . 8/10/12-bit output. 20 MP 5120 x 3840 . In-camera CMOS pattern corrections. 30 FPS . ALC - Automatic Level Controlled 41 mm CMOS exposure mode. 6.4 µm pixels . Programmable LUT, gamma correction, Global shutter flat field correction and blemish compensation True CDS . Single and multi-ROI functions. On-chip HDR functionality . 10 μs (1/100,000) to 8 seconds exposure control in 1 μs steps . Color and monochrome versions. 27 THANK YOU for seeing the possibilities Jari Löytömäki [email protected].
Recommended publications
  • Ultra HD Playout & Delivery
    Ultra HD Playout & Delivery SOLUTION BRIEF The next major advancement in television has arrived: Ultra HD. By 2020 more than 40 million consumers around the world are projected to be watching close to 250 linear UHD channels, a figure that doesn’t include VOD (video-on-demand) or OTT (over-the-top) UHD services. A complete UHD playout and delivery solution from Harmonic will help you to meet that demand. 4K UHD delivers a screen resolution four times that of 1080p60. Not to be confused with the 4K digital cinema format, a professional production and cinema standard with a resolution of 4096 x 2160, UHD is a broadcast and OTT standard with a video resolution of 3840 x 2160 pixels at 24/30 fps and 8-bit color sampling. Second-generation UHD specifications will reach a frame rate of 50/60 fps at 10 bits. When combined with advanced technologies such as high dynamic range (HDR) and wide color gamut (WCG), the home viewing experience will be unlike anything previously available. The expected demand for UHD content will include all types of programming, from VOD movie channels to live global sporting events such as the World Cup and Olympics. UHD-native channel deployments are already on the rise, including the first linear UHD channel in North America, NASA TV UHD, launched in 2015 via a partnership between Harmonic and NASA’s Marshall Space Flight Center. The channel highlights incredible imagery from the U.S. space program using an end-to-end UHD playout, encoding and delivery solution from Harmonic. The Harmonic UHD solution incorporates the latest developments in IP networking and compression technology, including HEVC (High- Efficiency Video Coding) signal transport and HDR enhancement.
    [Show full text]
  • JPEG-HDR: a Backwards-Compatible, High Dynamic Range Extension to JPEG
    JPEG-HDR: A Backwards-Compatible, High Dynamic Range Extension to JPEG Greg Ward Maryann Simmons BrightSide Technologies Walt Disney Feature Animation Abstract What we really need for HDR digital imaging is a compact The transition from traditional 24-bit RGB to high dynamic range representation that looks and displays like an output-referred (HDR) images is hindered by excessively large file formats with JPEG, but holds the extra information needed to enable it as a no backwards compatibility. In this paper, we demonstrate a scene-referred standard. The next generation of HDR cameras simple approach to HDR encoding that parallels the evolution of will then be able to write to this format without fear that the color television from its grayscale beginnings. A tone-mapped software on the receiving end won’t know what to do with it. version of each HDR original is accompanied by restorative Conventional image manipulation and display software will see information carried in a subband of a standard output-referred only the tone-mapped version of the image, gaining some benefit image. This subband contains a compressed ratio image, which from the HDR capture due to its better exposure. HDR-enabled when multiplied by the tone-mapped foreground, recovers the software will have full access to the original dynamic range HDR original. The tone-mapped image data is also compressed, recorded by the camera, permitting large exposure shifts and and the composite is delivered in a standard JPEG wrapper. To contrast manipulation during image editing in an extended color naïve software, the image looks like any other, and displays as a gamut.
    [Show full text]
  • Senior Tech Tuesday 11 Iphone Camera App Tour
    More Info: Links.SeniorTechClub.com/Tuesdays Welcome to Senior Tech Tuesday Live: 1/19/2021 Photography Series Tour of the Camera App Don Frederiksen Our Tuesday Focus ➢A Tour of the Camera App - Getting Beyond Point & Shoot ➢Selfies ➢Flash ➢Zoom ➢HDR is Good ➢What is a Live Photo ➢Focus & Exposure ➢Filters ➢Better iPhone Photography Tip ➢What’s Next www.SeniorTechClub.com Zoom Setup Zoom Speaker View Computer iPad or laptop Laptop www.SeniorTechClub.com Our Learning Tools ◦ Zoom Video Platform ◦ Slides – Downloadable from class page ◦ Demonstrations ◦ Your Questions ◦ “Hey Don” or Chat ◦ Email: [email protected] ◦ Online Class Page at: Links.SeniorTechClub.com/STT11 ◦ Tuesdays Page for Future Topics Links.SeniorTechClub.com/tuesdays www.SeniorTechClub.com Our Class Page Find our class page at: ◦ Links.SeniorTechClub.com/STT11 ◦ Bottom of the Tuesday page Purpose of the Class Page ◦ Relevant Information ◦ Fill in gaps from the online session ◦ Participate w/o being online www.SeniorTechClub.com Tour of our Class Page Slide Deck Video Archive Links & Resources Recipes & Nuggets www.SeniorTechClub.com A Tour of the Camera App Poll www.SeniorTechClub.com A Tour of the Camera App - Classic www.SeniorTechClub.com A Tour of the Camera App - New www.SeniorTechClub.com Switch Camera - Selfie Reminder: Long Press Shortcut Zoom Two kinds of zoom on iPhones Optical Zoom via a Lens Zoom Digital Zoom via a Pinch Better to zoom with your feet then digital Zoom Digital Zoom – Pinch Screen in or out Optical ◦ If your iPhone has more than one lens, tap: ◦ .5x or 1x or 2x (varies by model) Flash Focus & Exposure HDR Photos High Dynamic Range iPhone takes multiple photos to balance shadows and highlights.
    [Show full text]
  • JPEG Compatible Coding of High Dynamic Range Imagery Using Tone Mapping Operators
    JPEG Compatible Coding of High Dynamic Range Imagery using Tone Mapping Operators Min Chen1, Guoping Qiu1, Zhibo Chen2 and Charles Wang2 1School of Computer Science, The University of Nottingham, UK 2Thomson Broadband R&D (Beijing) Co., Ltd, China Abstract. In this paper, we introduce a new method for HDR imaging remain. For example, to display HDR compressing high dynamic range (HDR) imageries. Our images in conventional CRT or print HDR image on method exploits the fact that tone mapping is a necessary paper, the dynamic range of the image has to be operation for displaying HDR images on low dynamic compressed or the HDR image has to be tone mapped. range (LDR) reproduction media and seamlessly Even though there has been several tone mapping integrates tone mapping with a well-established image methods in the literature [3 - 12], non so far can compression standard to produce a HDR image universally produce satisfactorily results. Another huge compression technique that is backward compatible with challenge is efficient storage of HDR image. Compared established standards. We present a method to handle with conventional 24-bit/pixel images, HDR image is 96 color information so that HDR image can be gracefully bits/pixel and data is stored as 32-bit floating-point reconstructed from the tone mapped LDR image and numbers instead of 8-bit integer numbers. The data rate extra information stored with it. We present experimental using lossless coding, e.g, in OpenEXR [15], will be too results to demonstrate that the proposed technique works high especially when it comes to HDR video.
    [Show full text]
  • LIVE 15 Better Iphone Photos – Beyond Point
    Welcome to Senior Tech Club Please Stand By! LIVE! We will begin at With Don Frederiksen 10 AM CDT Welcome to Senior Tech Club LIVE! With Don Frederiksen www.SeniorTechClub.com Today’s LIVE! Focus ➢The iPhone has a Great Camera ➢Getting Beyond Point & Click ➢Rule of Thirds for Composition ➢HDR is Good ➢What is a Live Photo ➢Video Mode ➢Pano ➢What’s Next Questions: Text to: 612-930-2226 or YouTube Chat Housekeeping & Rules ➢Pretend that we are sitting around the kitchen table. ➢I Cannot See You!! ➢I Cannot Hear You!! ➢Questions & Comments ➢Chat at the YouTube Site ➢Send me a text – 612-930-2226 ➢Follow-up Question Email: [email protected] Questions: Text to: 612-930-2226 or YouTube Chat The iPhone puts a Good Camera in your pocket Questions: Text to: 612-930-2226 or YouTube Chat The iPhone puts a Good Camera in your pocket For Inspiration: Ippawards.com/gallery Questions: Text to: 612-930-2226 or YouTube Chat Typical iPhone Photographer Actions: 1. Tap Camera icon 2. Tap Shutter Questions: Text to: 612-930-2226 or YouTube Chat The iPhone puts a Good Camera in your pocket Let’s Use it to the Max Questions: Text to: 612-930-2226 or YouTube Chat The Camera App Questions: Text to: 612-930-2226 or YouTube Chat Rule of Thirds Questions: Text to: 612-930-2226 or YouTube Chat Rule of Thirds Google Search of Photography Rule of Thirds Images Questions: Text to: 612-930-2226 or YouTube Chat iPhone Grid Support Questions: Text to: 612-930-2226 or YouTube Chat Turn on the Grid Launch the Settings app.
    [Show full text]
  • High Dynamic Range Video
    High Dynamic Range Video Karol Myszkowski, Rafał Mantiuk, Grzegorz Krawczyk Contents 1 Introduction 5 1.1 Low vs. High Dynamic Range Imaging . 5 1.2 Device- and Scene-referred Image Representations . ...... 7 1.3 HDRRevolution ............................ 9 1.4 OrganizationoftheBook . 10 1.4.1 WhyHDRVideo? ....................... 11 1.4.2 ChapterOverview ....................... 12 2 Representation of an HDR Image 13 2.1 Light................................... 13 2.2 Color .................................. 15 2.3 DynamicRange............................. 18 3 HDR Image and Video Acquisition 21 3.1 Capture Techniques Capable of HDR . 21 3.1.1 Temporal Exposure Change . 22 3.1.2 Spatial Exposure Change . 23 3.1.3 MultipleSensorswithBeamSplitters . 24 3.1.4 SolidStateSensors . 24 3.2 Photometric Calibration of HDR Cameras . 25 3.2.1 Camera Response to Light . 25 3.2.2 Mathematical Framework for Response Estimation . 26 3.2.3 Procedure for Photometric Calibration . 29 3.2.4 Example Calibration of HDR Video Cameras . 30 3.2.5 Quality of Luminance Measurement . 33 3.2.6 Alternative Response Estimation Methods . 33 3.2.7 Discussion ........................... 34 4 HDR Image Quality 39 4.1 VisualMetricClassification. 39 4.2 A Visual Difference Predictor for HDR Images . 41 4.2.1 Implementation......................... 43 5 HDR Image, Video and Texture Compression 45 1 2 CONTENTS 5.1 HDR Pixel Formats and Color Spaces . 46 5.1.1 Minifloat: 16-bit Floating Point Numbers . 47 5.1.2 RGBE: Common Exponent . 47 5.1.3 LogLuv: Logarithmic encoding . 48 5.1.4 RGB Scale: low-complexity RGBE coding . 49 5.1.5 LogYuv: low-complexity LogLuv . 50 5.1.6 JND steps: Perceptually uniform encoding .
    [Show full text]
  • High Dynamic Range Image Compression Based on Visual Saliency Jin Wang,1,2 Shenda Li1 and Qing Zhu1
    SIP (2020), vol. 9, e16, page 1 of 15 © The Author(s), 2020 published by Cambridge University Press in association with Asia Pacific Signal and Information Processing Association. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, providedthesameCreative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use. doi:10.1017/ATSIP.2020.15 original paper High dynamic range image compression based on visual saliency jin wang,1,2 shenda li1 and qing zhu1 With wider luminance range than conventional low dynamic range (LDR) images, high dynamic range (HDR) images are more consistent with human visual system (HVS). Recently, JPEG committee releases a new HDR image compression standard JPEG XT. It decomposes an input HDR image into base layer and extension layer. The base layer code stream provides JPEG (ISO/IEC 10918) backward compatibility, while the extension layer code stream helps to reconstruct the original HDR image. However, thismethoddoesnotmakefulluseofHVS,causingwasteofbitsonimperceptibleregionstohumaneyes.Inthispaper,avisual saliency-based HDR image compression scheme is proposed. The saliency map of tone mapped HDR image is first extracted, then it is used to guide the encoding of extension layer. The compression quality is adaptive to the saliency of the coding region of the image. Extensive experimental results show that our method outperforms JPEG XT profile A, B, C and other state-of-the-art methods.
    [Show full text]
  • High Dynamic Range Metadata for Apple Devices (Preliminary)
    High Dynamic Range Metadata For Apple Devices (Preliminary) " Version 0.9 May 31, 2019 ! Copyright © 2019 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of Apple Inc., registered in the U.S. and other countries. Dolby, Dolby Vision, and the double-D symbol are trademarks of Dolby Laboratories. 1" Introduction 3 Dolby Vision™ 4 HDR10 6 Hybrid Log-Gamma (HLG) 8 References 9 Document Revision History 10 ! Copyright © 2019 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of Apple Inc., registered in the U.S. and other countries. Dolby, Dolby Vision, and the double-D symbol are trademarks of Dolby Laboratories. 2" Introduction This document describes the metadata and constraints for High Dynamic Range (HDR) video stored in a QuickTime Movie or ISO Base Media File required for proper display on Apple Plat- forms. Three types of HDR are detailed. 1. Dolby Vision™ 2. HDR10 3. Hybrid Log-Gamma (HLG) Note: The QuickTime Movie File Format Specification and the ISO Base Media File Format Specification use different terminology for broadly equivalent concepts: atoms and boxes; sam- ple descriptions and sample entries. This document uses the former specification's terminolo- gies without loss of generality. This document covers file-based workflows, for HLS streaming requirements go to: https://developer.apple.com/documentation/http_live_streaming/hls_authoring_specification_- for_apple_devices ! Copyright © 2019 Apple Inc. All rights reserved. Apple, the Apple logo and QuickTime are trademarks of Apple Inc., registered in the U.S. and other countries. Dolby, Dolby Vision, and the double-D symbol are trademarks of Dolby Laboratories.
    [Show full text]
  • Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection
    applied sciences Article Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection Ho-Hyoung Choi 1 , Hyun-Soo Kang 2,* and Byoung-Ju Yun 3,* 1 Advanced Dental Device Development Institute, School of Dentistry, Kyungpook National University, 2177, Dalgubeol-daero, Jung-gu, Daegu 41940, Korea; [email protected] 2 School of Information and Communication Engineering, College of Electrical and Computer Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Korea 3 School of Electronics Engineering, IT College, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea * Correspondence: [email protected] (H.-S.K.); [email protected] (B.-J.Y.); Tel.: +82-53-950-7329 (B.-J.Y.) Received: 9 September 2019; Accepted: 29 October 2019; Published: 1 November 2019 Abstract: One of the significant qualities of the human vision, which differentiates it from computer vision, is so called attentional control, which is the innate ability of our human eyes to select what visual stimuli to pay attention to at any moment in time. In this sense, the visual salience detection model, which is designed to simulate how the human visual system (HVS) perceives objects and scenes, is widely used for performing multiple vision tasks. This model is also in high demand in the tone mapping technology of high dynamic range images (HDRIs). Another distinct quality of the HVS is that our eyes blink and adjust brightness when objects are in their sight. Likewise, HDR imaging is a technology applied to a camera that takes pictures of an object several times by repeatedly opening and closing a camera iris, which is referred to as multiple exposures.
    [Show full text]
  • Neuromorphic Camera Guided High Dynamic Range Imaging
    Neuromorphic Camera Guided High Dynamic Range Imaging Jin Han1 Chu Zhou1 Peiqi Duan2 Yehui Tang1 Chang Xu3 Chao Xu1 Tiejun Huang2 Boxin Shi2∗ 1Key Laboratory of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University 2National Engineering Laboratory for Video Technology, Dept. of Computer Science, Peking University 3School of Computer Science, Faculty of Engineering, University of Sydney Abstract Conventional camera Reconstruction of high dynamic range image from a sin- gle low dynamic range image captured by a frame-based Intensity map guided LDR image HDR network conventional camera, which suffers from over- or under- 퐼 exposure, is an ill-posed problem. In contrast, recent neu- romorphic cameras are able to record high dynamic range scenes in the form of an intensity map, with much lower Intensity map spatial resolution, and without color. In this paper, we pro- 푋 pose a neuromorphic camera guided high dynamic range HDR image 퐻 imaging pipeline, and a network consisting of specially Neuromorphic designed modules according to each step in the pipeline, camera which bridges the domain gaps on resolution, dynamic range, and color representation between two types of sen- Figure 1. An intensity map guided HDR network is proposed to sors and images. A hybrid camera system has been built fuse the LDR image from a conventional camera and the intensity to validate that the proposed method is able to reconstruct map captured by a neuromorphic camera, to reconstruct an HDR quantitatively and qualitatively high-quality high dynamic image. range images by successfully fusing the images and inten- ing attention of researchers. Neuromorphic cameras have sity maps for various real-world scenarios.
    [Show full text]
  • High Dynamic Range and How It Will Impact Av Kramer Electronics White Paper – May 2017
    HIGH DYNAMIC RANGE AND HOW IT WILL IMPACT AV KRAMER ELECTRONICS WHITE PAPER – MAY 2017 KramerAV.com High Dynamic Range And How It Will Impact AV – Kramer White Paper 1 HIGH DYNAMIC RANGE High dynamic range (HDR) is here, and it’s fast becoming a buzzword in the AV community even though most people don’t really understand what the term describes or how it will impact video signal management and distribution. High dynamic range is indeed a truly significant development in visual imaging. Consider that while the human eye has a dynamic contrast ratio approaching 1,000,000:1, the average LCD display is limited to about 5,000:1 peak contrast. You can easily see where the ability to reproduce a wider range of tonal values electronically is a game-changer. There are several different ways to achieve high dynamic range. A standard dynamic range (SDR) camera might be able to capture 9 to 11 f-stops of light, easily reproduced by an LCD display with a peak brightness measurement of around 300 cd/m2 (nits). Or, we can use an organic light-emitting diode (OLED) display that may not be quite as bright but has much lower ‘black’ levels than an LCD display. It too can reproduce 11 luminance steps from black to 100% white. HDR completely rewrites the equation. Some HDR-equipped cameras can capture as many as 22 stops of light, creating peak luminance values in the thousands of nits. It stands to reason that whatever display we use will need a lot more horsepower at the bright end.
    [Show full text]
  • Direct View LED Display Pixel Pitch
    Advanced Display Technologies Presented by: JonathanAlan Brawn, C. Brawn & CTSJonathan Brawn CTS, ISF, ISF-C, DSCE, DSDE, DSNE Principal, PrincipalsBrawn of Brawn Consulting Consulting [email protected] [email protected] Advanced Display Technologies • The central focus of the commercial industry is (and perhaps always will be) displays. • The topic of displays is broad, encompassing many elements built in to the final products that we buy. • This course is intended to take a detailed look at the technologies that go into each type of displays that are commonly available today. • To place it all in context, we will examine the operation and construction of the technologies themselves, and advances and trends that will characterize where we will be going in the future. • We hope you enjoy the journey! Liquid Crystal Display (LCD) Technology LCD Made Possible • There's far more to building an LCD than simply creating a sheet of liquid crystals. • The combination of four principles makes LCDs possible: • Light can be polarized. • Liquid crystal can transmit polarized light or change the plane of polarization. • The structure of liquid crystals can be changed by electric field. • There are transparent substances that can conduct electricity. Polarization of Light • Light is made up of electromagnetic waves, that can be reflected, transmitted, or absorbed by materials. • These waves will naturally have an axis, or a plane that they follow as they move through space. • When light is said to be polarized, all of the waves of light are following the same axis and orientation of the plane. • A polarizing filter is designed to block out light of certain planes, while allowing specific orientations through the filter.
    [Show full text]