Scaling Quantum Computers with Long Chains of Trapped Ions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Christopher Monroe Joint Quantum Institute University of Maryland and NIST
PEP Seminar Series Wednesday, September 10th, 2:30 PM, Babbio 210 Christopher Monroe Joint Quantum Institute University of Maryland and NIST Trapped atomic ions are among the most promising candidates for a future quantum information processor, with each ion storing a single quantum bit (qubit) of information. All of the fundamental quantum operations have been demonstrated on this system, and the central challenge now is how to scale the system to larger numbers of qubits. The conventional approach to forming entangled states of multiple trapped ion qubits is through the local Coulomb interaction accompanied by appropriate state-dependent optical forces. Recently, trapped ion qubits have been entangled through a photonic coupling, allowing qubit memories to be entangled over remote distances. This coupling may allow the generation of truly large-scale entangled quantum states, and also impact the development of quantum repeater circuits for the communication of quantum information over geographic distances. I will discuss several options and issues for such atomic quantum networks, along with state-of-the-art experimental progress. Chris Monroe obtained his PhD at the University of Colorado at Boulder in 1992 under Carl Weiman. He worked as a Postdoctoral Researcher at the National Institute of Standard and Technology at Boulder with David Wineland. He was a Professor at the University of Michigan at the Department of Physics (2003- 2007) and at the Department of Electrical Engineering and Computer Science (2006-2007). He was the Director of FOCUS Center (an NSF Physics Frontier Center) at Michigan (2006-2007). He is a fellow of APS, the Institute of Physics (UK), and also at Joint Quantum Institute at the University of Maryland. -
Christopher Monroe: Biosketch
Christopher Monroe: Biosketch Christopher Monroe was born and raised outside of Detroit, MI, and graduated from MIT in 1987. He received his PhD in Physics at the University of Colorado, Boulder, studying with Carl Wieman and Eric Cornell. His work paved the way toward the achievement of Bose-Einstein condensation in 1995 and the Nobel Prize in Physics for Wieman and Cornell in 2001. From 1992-2000 he was a postdoc then staff physicist at the National Institute of Standards and Technology (NIST) in the group of David Wineland, leading the team that demonstrated the first quantum logic gate in any physical system. Based on this work, Wineland was awarded the Nobel Prize in Physics in 2012. In 2000, Monroe became Professor of Physics and Electrical Engineering at the University of Michigan, where he pioneered the use of single photons as a quantum conduit between isolated atoms and demonstrated the first atom trap integrated on a semiconductor chip. From 2006-2007 was the Director of the National Science Foundation Ultrafast Optics Center at the University of Michigan. In 2007 he became the Bice Zorn Professor of Physics at the University of Maryland (UMD) and a Fellow of the Joint Quantum Institute between UMD, NIST, and NSA. He is also a Fellow of the Center for Quantum Information and Computer Science at UMD, NIST, and NSA. His Maryland team was the first to teleport quantum information between matter separated by a large distance; they pioneered the use of ultrafast optical techniques for controlling atomic qubits and for quantum simulations of magnetism; and most recently demonstrated the first programmable and reconfigurable quantum computer. -
Quantum Inductive Learning and Quantum Logic Synthesis
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 2009 Quantum Inductive Learning and Quantum Logic Synthesis Martin Lukac Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Lukac, Martin, "Quantum Inductive Learning and Quantum Logic Synthesis" (2009). Dissertations and Theses. Paper 2319. https://doi.org/10.15760/etd.2316 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. QUANTUM INDUCTIVE LEARNING AND QUANTUM LOGIC SYNTHESIS by MARTIN LUKAC A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL AND COMPUTER ENGINEERING. Portland State University 2009 DISSERTATION APPROVAL The abstract and dissertation of Martin Lukac for the Doctor of Philosophy in Electrical and Computer Engineering were presented January 9, 2009, and accepted by the dissertation committee and the doctoral program. COMMITTEE APPROVALS: Irek Perkowski, Chair GarrisoH-Xireenwood -George ^Lendaris 5artM ?teven Bleiler Representative of the Office of Graduate Studies DOCTORAL PROGRAM APPROVAL: Malgorza /ska-Jeske7~Director Electrical Computer Engineering Ph.D. Program ABSTRACT An abstract of the dissertation of Martin Lukac for the Doctor of Philosophy in Electrical and Computer Engineering presented January 9, 2009. Title: Quantum Inductive Learning and Quantum Logic Synhesis Since Quantum Computer is almost realizable on large scale and Quantum Technology is one of the main solutions to the Moore Limit, Quantum Logic Synthesis (QLS) has become a required theory and tool for designing Quantum Logic Circuits. -
Reversible Logic Synthesis with Minimal Usage of Ancilla Bits Siyao
Reversible Logic Synthesis with Minimal Usage of Ancilla Bits by Siyao Xu Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2015 ○c Massachusetts Institute of Technology 2015. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science May 20, 2015 Certified by. Prof. Scott Aaronson Associate Professor Thesis Supervisor Accepted by . Prof. Albert R. Meyer Chairman, Masters of Engineering Thesis Committee 2 Reversible Logic Synthesis with Minimal Usage of Ancilla Bits by Siyao Xu Submitted to the Department of Electrical Engineering and Computer Science on May 20, 2015, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Engineering and Computer Science Abstract Reversible logic has attracted much research interest over the last few decades, espe- cially due to its application in quantum computing. In the construction of reversible gates from basic gates, ancilla bits are commonly used to remove restrictions on the type of gates that a certain set of basic gates generates. With unlimited ancilla bits, many gates (such as Toffoli and Fredkin) become universal reversible gates. However, ancilla bits can be expensive to implement, thus making the problem of minimizing necessary ancilla bits a practical topic. This thesis explores the problem of reversible logic synthesis using a single base gate and a few ancilla bits. Two base gates are discussed: a variation of the 3- bit Toffoli gate and the original 3-bit Fredkin gate. -
Steven Olmschenk Cv 2019
STEVEN OLMSCHENK Denison University Email: [email protected] Department of Physics & Astronomy Office Phone: 740.587.8661 100 West College Street Website: denison.edu/iqo Granville, Ohio 43023 Education o University of Michigan, Ann Arbor, MI Ph.D. in Physics, Advisor: Professor Christopher Monroe (August 2009) Thesis: “Quantum Teleportation Between Distant Matter Qubits” M.S.E. in Electrical Engineering (August 2007) M.Sc. in Physics (December 2005) o University of Chicago, Chicago, IL B.A. in Physics with Specialization in Astrophysics, Advisor: Professor Mark Oreglia (June 2004) Thesis: “Searching for Bottom Squarks” B.S. in Mathematics (June 2004) Experience o Associate professor, Denison University August 2018 – Present {Assistant professor, August 2012 – August 2018} Courses taught include: General Physics II (Physics 122); Principles of Physics I: Quarks to Cosmos (Physics 125); Modern Physics (Physics 200); Electronics (Physics 211); and Introduction to Quantum Mechanics (Physics 330). Research focused on experimental atomic physics, quantum optics, and quantum information with trapped atomic ions. o Postdoctoral researcher: Ultracold atomic physics with optical lattices, Supervisors: Doctor James (Trey) V. Porto and Doctor William D. Phillips, National Institute of Standards and Technology July 2009 – July 2012 Ultracold atoms confined in an optical lattice to study strongly correlated many-body states and for applications in quantum information science. o Graduate research assistant: Trapped ion quantum computing, Advisor: Professor Christopher Monroe, University of Michigan/Maryland September 2004 – July 2009 Advancements in quantum information science accomplished through experimental study of individual atomic ions and photons. o Earlier research: High Energy Physics (B.A. thesis); Solar Physics (NSF REU); Radio Astronomy. -
Surprising New States of Matter Called Time Crystals Show the Same Symmetry Properties in Time That Ordinary Crystals Do in Space by Frank Wilczek
PHYSICS CRYSTAL S IN TIME Surprising new states of matter called time crystals show the same symmetry properties in time that ordinary crystals do in space By Frank Wilczek Illustration by Mark Ross Studio 28 Scientific American, November 2019 © 2019 Scientific American November 2019, ScientificAmerican.com 29 © 2019 Scientific American Frank Wilczek is a theoretical physicist at the Massachusetts Institute of Technology. He won the 2004 Nobel Prize in Physics for his work on the theory of the strong force, and in 2012 he proposed the concept of time crystals. CRYSTAL S are nature’s most orderly suBstances. InsIde them, atoms and molecules are arranged in regular, repeating structures, giving rise to solids that are stable and rigid—and often beautiful to behold. People have found crystals fascinating and attractive since before the dawn of modern science, often prizing them as jewels. In the 19th century scientists’ quest to classify forms of crystals and understand their effect on light catalyzed important progress in mathematics and physics. Then, in the 20th century, study of the fundamental quantum mechanics of elec- trons in crystals led directly to modern semiconductor electronics and eventually to smart- phones and the Internet. The next step in our understanding of crystals is oc- These examples show that the mathematical concept IN BRIEF curring now, thanks to a principle that arose from Al- of symmetry captures an essential aspect of its com- bert Einstein’s relativity theory: space and time are in- mon meaning while adding the virtue of precision. Crystals are orderly timately connected and ultimately on the same footing. -
The Quantum Times
TThhee QQuuaannttuumm TTiimmeess APS Topical Group on Quantum Information, Concepts, and Computation autumn 2007 Volume 2, Number 3 Science Without Borders: Quantum Information in Iran This year the first International Iran Conference on Quantum Information (IICQI) – see http://iicqi.sharif.ir/ – was held at Kish Island in Iran 7-10 September 2007. The conference was sponsored by Sharif University of Technology and its affiliate Kish University, which was the local host of the conference, the Institute for Studies in Theoretical Physics and Mathematics (IPM), Hi-Tech Industries Center, Center for International Collaboration, Kish Free Zone Organization (KFZO) and The Center of Excellence In Complex System and Condensed Matter (CSCM). The high level of support was instrumental in supporting numerous foreign participants (one-quarter of the 98 registrants) and also in keeping the costs down for Iranian participants, and having the conference held at Kish Island meant that people from around the world could come without visas. The low cost for Iranians was important in making the Inside… conference a success. In contrast to typical conferences in most …you’ll find statements from of the world, Iranian faculty members and students do not have the candidates running for various much if any grant funding for conferences and travel and posts within our topical group. I therefore paid all or most of their own costs from their own extend my thanks and appreciation personal money, which meant that a low-cost meeting was to the candidates, who were under essential to encourage a high level of participation. On the plus a time-crunch, and Charles Bennett side, the attendees were extraordinarily committed to learning, and the rest of the Nominating discussing, and presenting work far beyond what I am used to at Committee for arranging the slate typical conferences: many participants came to talks prepared of candidates and collecting their and knowledgeable about the speaker's work, and the poster statements for the newsletter. -
Verified Compilation of Space-Efficient Reversible Circuits
Verified compilation of space-efficient reversible circuits Matthew Amy1;2, Martin Roetteler3, and Krysta M. Svore3 1 Institute for Quantum Computing, Waterloo, Canada 2 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada 3 Microsoft Research, Redmond, USA Abstract. The generation of reversible circuits from high-level code is an important problem in several application domains, including low- power electronics and quantum computing. Existing tools compile and optimize reversible circuits for various metrics, such as the overall cir- cuit size or the total amount of space required to implement a given function reversibly. However, little effort has been spent on verifying the correctness of the results, an issue of particular importance in quantum computing. There, compilation allows not only mapping to hardware, but also the estimation of resources required to implement a given quantum algorithm, a process that is crucial for identifying which algorithms will outperform their classical counterparts. We present a reversible circuit compiler called ReVerC, which has been formally verified in F? and compiles circuits that operate correctly with respect to the input pro- gram. Our compiler compiles the Revs language [21] to combinational reversible circuits with as few ancillary bits as possible, and provably cleans temporary values. 1 Introduction The ability to evaluate classical functions coherently and in superposition as part of a larger quantum computation is essential for many quantum algorithms. For example, Shor's quantum algorithm [26] uses classical modular arithmetic and Grover's quantum algorithm [11] uses classical predicates to implicitly define the underlying search problem. There is a resulting need for tools to help a programmer translate classical, irreversible programs into a form which a quan- tum computer can understand and carry out, namely into reversible circuits, arXiv:1603.01635v2 [quant-ph] 20 Apr 2018 which are a special case of quantum transformations [19]. -
Design of Regular Reversible Quantum Circuits
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1-1-2010 Design of Regular Reversible Quantum Circuits Dipal Shah Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Let us know how access to this document benefits ou.y Recommended Citation Shah, Dipal, "Design of Regular Reversible Quantum Circuits" (2010). Dissertations and Theses. Paper 129. https://doi.org/10.15760/etd.129 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Design of Regular Reversible Quantum Circuits by Dipal Shah A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering Dissertation Committee: Marek A. Perkowski, Chair Garrison Greenwood Xiaoyu Song Cynthia Brown Laszlo Csanky Portland State University © 2010 ABSTRACT The computing power in terms of speed and capacity of today's digital computers has improved tremendously in the last decade. This improvement came mainly due to a revolution in manufacturing technology by developing the ability to manufacture smaller devices and by integrating more devices on a single die. Further development of the current technology will be restricted by physical limits since it won't be possible to shrink devices beyond a certain size. Eventually, classical electrical circuits will encounter the barrier of quantum mechanics. The laws of quantum mechanics can be used for building computing systems that work on the principles of quantum mechanics. -
Quantum Computing
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11032–11033, September 1998 From the Academy This paper is a summary of a session presented at the Ninth Annual Frontiers of Science Symposium, held November 7–9, 1997, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. Quantum computing GILLES BRASSARD*†,ISAAC CHUANG‡,SETH LLOYD§, AND CHRISTOPHER MONROE¶ *De´partement d’informatique et de recherche ope´rationnelle, Universite´ de Montre´al, C.P. 6128, succursale centre-ville, Montre´al, QC H3C 3J7 Canada; ‡IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120; §Massachusetts Institute of Technology, Department of Mechanical Engineering, MIT 3-160, Cambridge, MA 02139; and ¶National Institute of Standards and Technology, Time and Frequency Division, 325 Broadway, Boulder, CO 80303 Quantum computation is the extension of classical computa- Quantum parallelism arises because a quantum operation tion to the processing of quantum information, using quantum acting on a superposition of inputs produces a superposition of systems such as individual atoms, molecules, or photons. It has outputs. For example, consider some function f and a quantum the potential to bring about a spectacular revolution in com- logic circuit U that computes it by mapping quantum register puter science. Current-day electronic computers are not fun- ux,0& to output ux, f(x)&. Let x and y be two distinct inputs, and damentally different from purely mechanical computers: the prepare the superposition (ux,0&1uy,0&)y=2. Applying U operation of either can be described completely in terms of produces (ux, f(x)&1uy, f(y)&)y=2: the value of function f is classical physics. -
Decomposition of Reversible Logic Function Based on Cube-Reordering
Portland State University PDXScholar Electrical and Computer Engineering Faculty Publications and Presentations Electrical and Computer Engineering 12-2011 Decomposition of Reversible Logic Function Based on Cube-Reordering Martin Lukac Tohoku University Michitaka Kameyama Tohoku University Marek Perkowski Portland State University Pawel Kerntopf Warsaw University of Technology Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Citation Details Lukac, Martin, Michitaka Kameyama, Marek Perkowski, and Pawel Kerntopf. "Decomposition of reversible logic function based on cube-reordering." Facta universitatis-series: Electronics and Energetics 24, no. 3 (2011): 403-422. This Article is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. FACTA UNIVERSITATIS (NIS)ˇ SER.: ELEC. ENERG. vol. 24, no. 3, December 2011, 403-422 Decomposition of Reversible Logic Function Based on Cube-Reordering Martin Lukac, Michitaka Kameyama, Marek Perkowski, and Pawel Kerntopf Abstract: We present a novel approach to the synthesis of incompletely specified reversible logic functions. The method is based on cube grouping; the first step of the synthesis method analyzes the logic function and generates groupings of same cubes in such a manner that multiple sub-functions are realized by a single Toffoli gate. This process also reorders the function in such a manner that not only groups of similarly defined cubes are joined together but also don’t care cubes. -
Quantum Computing with Atoms Christopher Monroe Computing and Information
Quantum Computing with Atoms Christopher Monroe Computing and Information Alan Turing (1912-1954) universal computing machines moving CPU 011 Claude Shannon (1916-2001) quantify information: the bit read/write device 1 0 1 1 0 0 1 푘 memory tape 퐻 = − 푝푖푙표푔2푝푖 푖=1 vacuum tubes ENIAC (1946) МЭСМ (1949) solid-state transistor Colossus (1943) (1947) Moore’s Law exponential growth in computing Transistor density relative to 1978 Richard 100,000 Feynman 10,000 1,000 100 There's Plenty of Room at the Bottom (1959) 10 “When we get to the very, very small world – say circuits of seven atoms – we have a lot of new things that would happen 1 that represent completely new opportunities for design. Atoms 1980 1990 2000 2010 2018 on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics…” Quantum Information Science |0 state |0 state Prob = |a|2 Quantum bits |1 state |1 state superposition measurement: Prob = |b|2 a|0 + b|1 “state collapse” |0|0 state Entanglement OR superposition |1|1 state a|0|0 + b|1|1 entanglement: “wiring without wires” Good News… …Bad News… …Good News! parallel processing measurement gives quantum interference on 2N inputs random result e.g., N=3 qubits f(x) f(x) a |000 + a |001 + a |010 + a |011 depends 0 1 2 3 on all inputs a4 |100 + a5|101 + a6 |110 + a7 |111 N=300 qubits have more configurations than there are David Deutsch particles in the universe! (early 1990s) Application: Factoring Numbers A quantum computer can factor numbers exponentially faster than classical computers P.