Gpu-Accelerated Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physx As a Middleware for Dynamic Simulations in the Container Loading Problem
Proceedings of the 2018 Winter Simulation Conference M. Rabe, A.A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds. PHYSX AS A MIDDLEWARE FOR DYNAMIC SIMULATIONS IN THE CONTAINER LOADING PROBLEM Juan C. Martínez-Franco David Álvarez-Martínez Department of Mechanical Engineering Department of Industrial Engineering Universidad de Los Andes Universidad de Los Andes Carrera 1 Este No. 19A – 40 Carrera 1 Este No. 19A – 40 Bogotá, 11711, COLOMBIA Bogotá, 11711, COLOMBIA ABSTRACT The Container Loading Problem (CLP) is an optimization challenge where the constraint of dynamic stability plays a significant role. The evaluation of dynamic stability requires the use of dynamic simulations that are carried out either with dedicated simulation software that produces very small errors at the expense of simulation speed, or real-time physics engines that complete simulations in a very short time at the cost of repeatability. One such engine, PhysX, is evaluated to determine the feasibility of its integration with the open source application PackageCargo. A simulation tool based on PhysX is proposed and compared with the dynamic simulation environment of Autodesk Inventor to verify its reliability. The simulation tool presents a dynamically accurate representation of the physical phenomena experienced by cargo during transportation, making it a viable option for the evaluation of dynamic stability in solutions to the CLP. 1 INTRODUCTION The Container Loading Problem (CLP) consists of the geometric arrangement of small rectangular items (cargo) into a larger rectangular space (container), but it is not a simple geometry problem. The arrangements of cargo must maximize volume utilization while complying with certain constraints such as cargo fragility, delivery order, etc. -
Shipbreaking Bulletin of Information and Analysis on Ship Demolition # 60, from April 1 to June 30, 2020
Shipbreaking Bulletin of information and analysis on ship demolition # 60, from April 1 to June 30, 2020 August 4, 2020 On the Don River (Russia), January 2019. © Nautic/Fleetphoto Maritime acts like a wizzard. Otherwise, how could a Renaissance, built in the ex Tchecoslovakia, committed to Tanzania, ambassador of the Italian and French culture, carrying carefully general cargo on the icy Russian waters, have ended up one year later, under the watch of an Ukrainian classification society, in a Turkish scrapyard to be recycled in saucepans or in containers ? Content Wanted 2 General cargo carrier 12 Car carrier 36 Another river barge on the sea bottom 4 Container ship 18 Dreger / stone carrier 39 The VLOCs' ex VLCCs Flop 5 Ro Ro 26 Offshore service vessel 40 The one that escaped scrapping 6 Heavy load carrier 27 Research vessel 42 Derelict ships (continued) 7 Oil tanker 28 The END: 44 2nd quarter 2020 overview 8 Gas carrier 30 Have your handkerchiefs ready! Ferry 10 Chemical tanker 31 Sources 55 Cruise ship 11 Bulker 32 Robin des Bois - 1 - Shipbreaking # 60 – August 2020 Despina Andrianna. © OD/MarineTraffic Received on June 29, 2020 from Hong Kong (...) Our firm, (...) provides senior secured loans to shipowners across the globe. We are writing to enquire about vessel details in your shipbreaking publication #58 available online: http://robindesbois.org/wp-content/uploads/shipbreaking58.pdf. In particular we had questions on two vessels: Despinna Adrianna (Page 41) · We understand it was renamed to ZARA and re-flagged to Comoros · According -
GPU Developments 2018
GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR. -
Adding RTX Acceleration to Iray with Optix 7
Adding RTX acceleration to Iray with OptiX 7 Lutz Kettner Director Advanced Rendering and Materials July 30th, SIGGRAPH 2019 What is Iray? Production Rendering on CUDA In Production since > 10 Years Bring ray tracing based production / simulation quality rendering to GPUs New paradigm: Push Button rendering (open up new markets) Plugins for 3ds Max Maya Rhino SketchUp … 2 SIMULATION QUALITY 3 iray legacy ARTISTIC FREEDOM 4 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good enough hacks to minimum • Brute force (spectral) simulation no intermediate filtering scale over multiple GPUs and hosts even in interactive use GTC 2014 19 VCA * 8 Q6000 GPUs 5 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good enough hacks to minimum • Brute force (spectral) simulation no intermediate filtering scale over multiple GPUs and hosts even in interactive use • Two-way path tracing from camera and (opt.) lights 6 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good enough hacks to minimum • Brute force (spectral) simulation no intermediate filtering scale over multiple GPUs and hosts even in interactive use • Two-way path tracing from camera and (opt.) lights • Use NVIDIA Material Definition Language (MDL) 7 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good -
Achieving Safe DICOM Software in Medical Devices
Master Thesis in Software Engineering & Management REPORT NO. 2009:003 ISSN: 1651-4769 Achieving Safe DICOM Software in Medical Devices Kevin Debruyn IT University of Göteborg Chalmers University of Technology and University of Gothenburg Göteborg, Sweden 2009 Student Kevin Debruyn (820717-2795) Contact Information Phone: +46 73 7418420 / Email: [email protected] Course Supervisor Karin Wagner Course Coordinator Kari Wahll Start and End Date 21 st of February 2008 to 30 th of March 2009 Size 30 Credits Subject Achieving Safe DICOM Software in Medical Devices Overview The present document constitutes the project report that introduces, develops and presents the results of the thesis carried out by a master student of the IT University in Göteborg, Software Engineering & Management during Spring 2008 through Spring 2009 at Micropos Medical AB . Summary This paper reports on an investigation on how to produce a reliable software component to extract critical information from DICOM files. The component shall manipulate safety-critical medical information, i.e. patient demographics and data specific to radiotherapy treatments including radiation target volumes and doses intensity. Handling such sensitive data can potentially lead to medical errors, and threaten the health of patients. Hence, guaranteeing reliability and safety is an essential part of the development process. Solutions for developing the component from scratch or reusing all or parts of existing systems and libraries will be evaluated and compared. The resulting component will be tested to verify that it satisfies its reliability requirements. Subsequently, the component is to be integrated within an innovating radiotherapy positioning system developed by a Swedish start-up, Micropos . -
Nvidia Video Codec Sdk - Encoder
NVIDIA VIDEO CODEC SDK - ENCODER Application Note vNVENC_DA-6209-001_v14 | July 2021 Table of Contents Chapter 1. NVIDIA Hardware Video Encoder.......................................................................1 1.1. Introduction............................................................................................................................... 1 1.2. NVENC Capabilities...................................................................................................................1 1.3. NVENC Licensing Policy...........................................................................................................3 1.4. NVENC Performance................................................................................................................ 3 1.5. Programming NVENC...............................................................................................................5 1.6. FFmpeg Support....................................................................................................................... 5 NVIDIA VIDEO CODEC SDK - ENCODER vNVENC_DA-6209-001_v14 | ii Chapter 1. NVIDIA Hardware Video Encoder 1.1. Introduction NVIDIA GPUs - beginning with the Kepler generation - contain a hardware-based encoder (referred to as NVENC in this document) which provides fully accelerated hardware-based video encoding and is independent of graphics/CUDA cores. With end-to-end encoding offloaded to NVENC, the graphics/CUDA cores and the CPU cores are free for other operations. For example, in a game recording scenario, -
The Growing Importance of Ray Tracing Due to Gpus
NVIDIA Application Acceleration Engines advancing interactive realism & development speed July 2010 NVIDIA Application Acceleration Engines A family of highly optimized software modules, enabling software developers to supercharge applications with high performance capabilities that exploit NVIDIA GPUs. Easy to acquire, license and deploy (most being free) Valuable features and superior performance can be quickly added App’s stay pace with GPU advancements (via API abstraction) NVIDIA Application Acceleration Engines PhysX physics & dynamics engine breathing life into real-time 3D; Apex enabling 3D animators CgFX programmable shading engine enhancing realism across platforms and hardware SceniX scene management engine the basis of a real-time 3D system CompleX scene scaling engine giving a broader/faster view on massive data OptiX ray tracing engine making ray tracing ultra fast to execute and develop iray physically correct, photorealistic renderer, from mental images making photorealism easy to add and produce © 2010 Application Acceleration Engines PhysX • Streamlines the adoption of latest GPU capabilities, physics & dynamics getting cutting-edge features into applications ASAP, CgFX exploiting the full power of larger and multiple GPUs programmable shading • Gaining adoption by key ISVs in major markets: SceniX scene • Oil & Gas Statoil, Open Inventor management • Design Autodesk, Dassault Systems CompleX • Styling Autodesk, Bunkspeed, RTT, ICIDO scene scaling • Digital Content Creation Autodesk OptiX ray tracing • Medical Imaging N.I.H iray photoreal rendering © 2010 Accelerating Application Development App Example: Auto Styling App Example: Seismic Interpretation 1. Establish the Scene 1. Establish the Scene = SceniX = SceniX 2. Maximize interactive 2. Maximize data visualization quality + quad buffered stereo + CgFX + OptiX + volume rendering + ambient occlusion 3. -
NVIDIA Physx SDK EULA
NVIDIA CORPORATION NVIDIA® PHYSX® SDK END USER LICENSE AGREEMENT Welcome to the new world of reality gaming brought to you by PhysX® acceleration from NVIDIA®. NVIDIA Corporation (“NVIDIA”) is willing to license the PHYSX SDK and the accompanying documentation to you only on the condition that you accept all the terms in this License Agreement (“Agreement”). IMPORTANT: READ THE FOLLOWING TERMS AND CONDITIONS BEFORE USING THE ACCOMPANYING NVIDIA PHYSX SDK. IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, NVIDIA IS NOT WILLING TO LICENSE THE PHYSX SDK TO YOU. IF YOU DO NOT AGREE TO THESE TERMS, YOU SHALL DESTROY THIS ENTIRE PRODUCT AND PROVIDE EMAIL VERIFICATION TO [email protected] OF DELETION OF ALL COPIES OF THE ENTIRE PRODUCT. NVIDIA MAY MODIFY THE TERMS OF THIS AGREEMENT FROM TIME TO TIME. ANY USE OF THE PHYSX SDK WILL BE SUBJECT TO SUCH UPDATED TERMS. A CURRENT VERSION OF THIS AGREEMENT IS POSTED ON NVIDIA’S DEVELOPER WEBSITE: www.developer.nvidia.com/object/physx_eula.html 1. Definitions. “Licensed Platforms” means the following: - Any PC or Apple Mac computer with a NVIDIA CUDA-enabled processor executing NVIDIA PhysX; - Any PC or Apple Mac computer running NVIDIA PhysX software executing on the primary central processing unit of the PC only; - Any PC utilizing an AGEIA PhysX processor executing NVIDIA PhysX code; - Microsoft XBOX 360; - Nintendo Wii; and/or - Sony Playstation 3 “Physics Application” means a software application designed for use and fully compatible with the PhysX SDK and/or NVIDIA Graphics processor products, including but not limited to, a video game, visual simulation, movie, or other product. -
Acoustic Simulation for Spacecraft Launch Modeling & Simulating Random Excitations
TM FFT: Solution Brief - Actran SOLUTION BRIEF Acoustic Simulation for Spacecraft Launch Modeling & Simulating Random Excitations Design Challenge Key Software Features At lift-off, payload components like satellites or antennas are exposed • Acoustic Finite Elements for cavity to intense acoustic excitations that can damage their structures. and exterior acoustics modeling • Acoustic Infinite Elements or Adaptive Excitations to the Model Perfectly Match Layers (APML) for modeling the far field anechoic condition Excitations to the model can include Diffuse Sound Field (DSF) • Structure elements library: solids, shells, or Turbulent Boundary Layer (TBL) directly on the structure, or composites, laminated structures, randomized plane waves applied to air around the spacecraft membranes, beams, springs, rigid or launch vehicle, which in turn applies the DSF to the structure. connec tions, etc. Internal air volumes and acoustic blankets can also be modeled for a • Poro-elastic element library based on the more accurate simulation. A hybrid frequency response solution is BIOT theory for modeling bulk reacting possible where modal frequency response will be solved on the structure materials and direct frequency response will be solved for the fluid and blanket, • Nastran to Actran translator (NAS2ACT) or anywhere that damping is frequency dependent. to convert Nastran structure models into Results can include acoustic quantities like Sound Power, Sound Actran models Pressure, or directivity, as well as quantities calculated on the • Import -
Tegra Linux Driver Package
TEGRA LINUX DRIVER PACKAGE RN_05071-R32 | March 18, 2019 Subject to Change 32.1 Release Notes RN_05071-R32 Table of Contents 1.0 About this Release ................................................................................... 3 1.1 Login Credentials ............................................................................................... 4 2.0 Known Issues .......................................................................................... 5 2.1 General System Usability ...................................................................................... 5 2.2 Boot .............................................................................................................. 6 2.3 Camera ........................................................................................................... 6 2.4 CUDA Samples .................................................................................................. 7 2.5 Multimedia ....................................................................................................... 7 3.0 Top Fixed Issues ...................................................................................... 9 3.1 General System Usability ...................................................................................... 9 3.2 Camera ........................................................................................................... 9 4.0 Documentation Corrections ..................................................................... 10 4.1 Adaptation and Bring-Up Guide ............................................................................ -
Actran VI Dedicated Pre & Post-Processor for the Actran CAE Software Family
Actran VI Dedicated pre & post-processor for the Actran CAE software family Key features • Support of all Actran features for the creation and editing of Actran analyses • Support of different mesh formats Product overview such as BDF (MSC Nastran), OP2 (MSC Nastran), UNV, RST (Ansys), Dedicated pre & post-processor for the Actran CAE software family CDB (Ansys), NFF & DAT (Actran) Actran VI is the graphical user interface (GUI) specifi cally designed for the pre- and and Patran Neutral Format post-processing of all the Actran vibro- and aero-acoustic analyses. Actran VI can import • Support of different results formats a large number of different mesh formats (Nastran BDF, ANSYS RST and CDB, Actran such as OP2, UNV, NFF, RST, HDF DAT and NFF, I-DEAS UNV, PATRAN Neutral Format) into its environment and features and Punch its own meshing tool specifi cally designed for generating, modifying and improving meshes for vibro- and aero-acoustic analyses. Its numerous meshing functionalities • Reading Nastran structure analysis, include surface and volume operations such as shrink-wrap and mesh-on-mesh surface translate and enrich into Actran generation or tetrahedral volume creations. It also features several editing tools allowing vibro-acoustic analysis fast and easy improvements of the acoustic mesh. Its various pre-processing functionalities ease the creation and editing of Actran models. • Visualization of Actran specific It is easy to visualize specifi c Actran model features, such as acoustic sources, duct features modes, beam’s shape, dynamic load, different boundary conditions, infi nite elements coordinate system, etc. ActranVI can also read Nastran structure analysis and translate • Visualization of the projection the Nastran properties into Actran properties. -
ACTRAN Acoustics the Most Efficient Solution for Predicting Acoustic Radiation
PRODUCTS ACTRAN Acoustics The most efficient solution for predicting acoustic radiation. KEY FEATURES > Standard and convected acous- tics > Extraction of acoustic modes > Handling of heterogeneities such as complex flows or temperature gradients Product overview > Account for dissipation me- chanisms such as viscothermal Rich and powerful acoustic features for your simu- losses, acoustic absorption... lation needs > Direct response and modal su- perposition approaches ACTRAN Acoustics is the foundation where it brings unprecedented module of the ACTRAN family and efficiency, speed and productivity > Unique library of stable infinite is both a standalone tool and a pre- to your analysis process. ACTRAN elements for modeling anechoic requisite for advanced modules like Acoustics features seamless boundary conditions ACTRAN VibroAcoustics, ACTRAN interfaces with most FEA structural AeroAcoustics or ACTRAN TM. analysis codes like NASTRAN, > Pressure, velocity and admit- ACTRAN Acoustics contains a wide ABAQUS™ or ANSYS™. tance boundary condition set of acoustic modeling features ACTRAN Acoustics also offers making it the CAE tool of choice powerful features for analyzing > Plane, spherical and cylindrical for the simulation of a large variety sound propagation in ducts and may wave sources and excitation of of problems, from the simplest be used for designing e.g. intake ducts by incident plane waves component to the most elaborate and exhaust lines or air distribution system. The ACTRAN Acoustics systems in buildings, aircrafts and > Vibration results recovery from product relies on Free Field cars. most FEA structural analysis solvers for radiation analysis Technologies’ exclusive powerful, Among the many advanced features robust, fast and reliable acoustic available in ACTRAN Acoustics are > Direct and iterative solvers for finite and infinite element library.