Bid-Ask Spread for Exotic Options Under Conic Finance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seeking Income: Cash Flow Distribution Analysis of S&P 500
RESEARCH Income CONTRIBUTORS Berlinda Liu Seeking Income: Cash Flow Director Global Research & Design Distribution Analysis of S&P [email protected] ® Ryan Poirier, FRM 500 Buy-Write Strategies Senior Analyst Global Research & Design EXECUTIVE SUMMARY [email protected] In recent years, income-seeking market participants have shown increased interest in buy-write strategies that exchange upside potential for upfront option premium. Our empirical study investigated popular buy-write benchmarks, as well as other alternative strategies with varied strike selection, option maturity, and underlying equity instruments, and made the following observations in terms of distribution capabilities. Although the CBOE S&P 500 BuyWrite Index (BXM), the leading buy-write benchmark, writes at-the-money (ATM) monthly options, a market participant may be better off selling out-of-the-money (OTM) options and allowing the equity portfolio to grow. Equity growth serves as another source of distribution if the option premium does not meet the distribution target, and it prevents the equity portfolio from being liquidated too quickly due to cash settlement of the expiring options. Given a predetermined distribution goal, a market participant may consider an option based on its premium rather than its moneyness. This alternative approach tends to generate a more steady income stream, thus reducing trading cost. However, just as with the traditional approach that chooses options by moneyness, a high target premium may suffocate equity growth and result in either less income or quick equity depletion. Compared with monthly standard options, selling quarterly options may reduce the loss from the cash settlement of expiring calls, while selling weekly options could incur more loss. -
Implied Volatility Modeling
Implied Volatility Modeling Sarves Verma, Gunhan Mehmet Ertosun, Wei Wang, Benjamin Ambruster, Kay Giesecke I Introduction Although Black-Scholes formula is very popular among market practitioners, when applied to call and put options, it often reduces to a means of quoting options in terms of another parameter, the implied volatility. Further, the function σ BS TK ),(: ⎯⎯→ σ BS TK ),( t t ………………………………(1) is called the implied volatility surface. Two significant features of the surface is worth mentioning”: a) the non-flat profile of the surface which is often called the ‘smile’or the ‘skew’ suggests that the Black-Scholes formula is inefficient to price options b) the level of implied volatilities changes with time thus deforming it continuously. Since, the black- scholes model fails to model volatility, modeling implied volatility has become an active area of research. At present, volatility is modeled in primarily four different ways which are : a) The stochastic volatility model which assumes a stochastic nature of volatility [1]. The problem with this approach often lies in finding the market price of volatility risk which can’t be observed in the market. b) The deterministic volatility function (DVF) which assumes that volatility is a function of time alone and is completely deterministic [2,3]. This fails because as mentioned before the implied volatility surface changes with time continuously and is unpredictable at a given point of time. Ergo, the lattice model [2] & the Dupire approach [3] often fail[4] c) a factor based approach which assumes that implied volatility can be constructed by forming basis vectors. Further, one can use implied volatility as a mean reverting Ornstein-Ulhenbeck process for estimating implied volatility[5]. -
The Forward Smile in Stochastic Local Volatility Models
The forward smile in stochastic local volatility models Andrea Mazzon∗ Andrea Pascucciy Abstract We introduce an approximation of forward start options in a multi-factor local-stochastic volatility model. We derive explicit expansion formulas for the so-called forward implied volatility which can be useful to price complex path-dependent options, as cliquets. The expansion involves only polynomials and can be computed without the need for numerical procedures or special functions. Recent results on the exploding behaviour of the forward smile in the Heston model are confirmed and generalized to a wider class of local-stochastic volatility models. We illustrate the effectiveness of the technique through some numerical tests. Keywords: forward implied volatility, cliquet option, local volatility, stochastic volatility, analytical ap- proximation Key messages • approximation for the forward implied volatility • local stochastic volatility models • explosion of the out-of-the-money forward smile 1 Introduction In an arbitrage-free market, we consider the risk-neutral dynamics described by the d-dimensional Markov diffusion dXt = µ(t; Xt)dt + σ(t; Xt)dWt; (1.1) where W is a m-dimensional Brownian motion. The first component X1 represents the log-price of an asset, while the other components of X represent a number of things, e.g., stochastic volatilities, economic indicators or functions of these quantities. We are interested in the forward start payoff + X1 −X1 k e t+τ t − e (1.2) ∗Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L'Aquila, Italy ([email protected]) yDipartimento di Matematica, Universit`a di Bologna, Piazza di Porta S. -
Dixit-Pindyck and Arrow-Fisher-Hanemann-Henry Option Concepts in a Finance Framework
Dixit-Pindyck and Arrow-Fisher-Hanemann-Henry Option Concepts in a Finance Framework January 12, 2015 Abstract We look at the debate on the equivalence of the Dixit-Pindyck (DP) and Arrow-Fisher- Hanemann-Henry (AFHH) option values. Casting the problem into a financial framework allows to disentangle the discussion without unnecessarily introducing new definitions. Instead, the option values can be easily translated to meaningful terms of financial option pricing. We find that the DP option value can easily be described as time-value of an American plain-vanilla option, while the AFHH option value is an exotic chooser option. Although the option values can be numerically equal, they differ for interesting, i.e. non-trivial investment decisions and benefit-cost analyses. We find that for applied work, compared to the Dixit-Pindyck value, the AFHH concept has only limited use. Keywords: Benefit cost analysis, irreversibility, option, quasi-option value, real option, uncertainty. Abbreviations: i.e.: id est; e.g.: exemplum gratia. 1 Introduction In the recent decades, the real options1 concept gained a large foothold in the strat- egy and investment literature, even more so with Dixit & Pindyck (1994)'s (DP) seminal volume on investment under uncertainty. In environmental economics, the importance of irreversibility has already been known since the contributions of Arrow & Fisher (1974), Henry (1974), and Hanemann (1989) (AFHH) on quasi-options. As Fisher (2000) notes, a unification of the two option concepts would have the benefit of applying the vast results of real option pricing in environmental issues. In his 1The term real option has been coined by Myers (1977). -
The Promise and Peril of Real Options
1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics have made the argument that traditional discounted cash flow models do a poor job of capturing the value of the options embedded in many corporate actions. They have noted that these options need to be not only considered explicitly and valued, but also that the value of these options can be substantial. In fact, many investments and acquisitions that would not be justifiable otherwise will be value enhancing, if the options embedded in them are considered. In this paper, we examine the merits of this argument. While it is certainly true that there are options embedded in many actions, we consider the conditions that have to be met for these options to have value. We also develop a series of applied examples, where we attempt to value these options and consider the effect on investment, financing and valuation decisions. 3 In finance, the discounted cash flow model operates as the basic framework for most analysis. In investment analysis, for instance, the conventional view is that the net present value of a project is the measure of the value that it will add to the firm taking it. Thus, investing in a positive (negative) net present value project will increase (decrease) value. In capital structure decisions, a financing mix that minimizes the cost of capital, without impairing operating cash flows, increases firm value and is therefore viewed as the optimal mix. -
Show Me the Money: Option Moneyness Concentration and Future Stock Returns Kelley Bergsma Assistant Professor of Finance Ohio Un
Show Me the Money: Option Moneyness Concentration and Future Stock Returns Kelley Bergsma Assistant Professor of Finance Ohio University Vivien Csapi Assistant Professor of Finance University of Pecs Dean Diavatopoulos* Assistant Professor of Finance Seattle University Andy Fodor Professor of Finance Ohio University Keywords: option moneyness, implied volatility, open interest, stock returns JEL Classifications: G11, G12, G13 *Communications Author Address: Albers School of Business and Economics Department of Finance 901 12th Avenue Seattle, WA 98122 Phone: 206-265-1929 Email: [email protected] Show Me the Money: Option Moneyness Concentration and Future Stock Returns Abstract Informed traders often use options that are not in-the-money because these options offer higher potential gains for a smaller upfront cost. Since leverage is monotonically related to option moneyness (K/S), it follows that a higher concentration of trading in options of certain moneyness levels indicates more informed trading. Using a measure of stock-level dollar volume weighted average moneyness (AveMoney), we find that stock returns increase with AveMoney, suggesting more trading activity in options with higher leverage is a signal for future stock returns. The economic impact of AveMoney is strongest among stocks with high implied volatility, which reflects greater investor uncertainty and thus higher potential rewards for informed option traders. AveMoney also has greater predictive power as open interest increases. Our results hold at the portfolio level as well as cross-sectionally after controlling for liquidity and risk. When AveMoney is calculated with calls, a portfolio long high AveMoney stocks and short low AveMoney stocks yields a Fama-French five-factor alpha of 12% per year for all stocks and 33% per year using stocks with high implied volatility. -
New Frontiers in Practical Risk Management
New Frontiers in Practical Risk Management English edition Issue n.6-S pring 2015 Iason ltd. and Energisk.org are the editors of Argo newsletter. Iason is the publisher. No one is al- lowed to reproduce or transmit any part of this document in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Iason ltd. Neither editor is responsible for any consequence directly or indirectly stem- ming from the use of any kind of adoption of the methods, models, and ideas appearing in the con- tributions contained in Argo newsletter, nor they assume any responsibility related to the appropri- ateness and/or truth of numbers, figures, and statements expressed by authors of those contributions. New Frontiers in Practical Risk Management Year 2 - Issue Number 6 - Spring 2015 Published in June 2015 First published in October 2013 Last published issues are available online: www.iasonltd.com www.energisk.org Spring 2015 NEW FRONTIERS IN PRACTICAL RISK MANAGEMENT Editors: Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Andrea RONCORONI (ESSEC Business School, Paris) Executive Editor: Luca OLIVO (Iason ltd) Scientific Editorial Board: Fred Espen BENTH (University of Oslo) Alvaro CARTEA (University College London) Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Mark CUMMINS (Dublin City University Business School) Gianluca FUSAI (Cass Business School, London) Sebastian JAIMUNGAL (University of Toronto) Fabio MERCURIO (Bloomberg LP) Andrea RONCORONI (ESSEC Business School, Paris) Rafal WERON (Wroclaw University of Technology) Iason ltd Registered Address: 6 O’Curry Street Limerick 4 Ireland Italian Address: Piazza 4 Novembre, 6 20124 Milano Italy Contact Information: [email protected] www.iasonltd.com Energisk.org Contact Information: [email protected] www.energisk.org Iason ltd and Energisk.org are registered trademark. -
OPTION-BASED EQUITY STRATEGIES Roberto Obregon
MEKETA INVESTMENT GROUP BOSTON MA CHICAGO IL MIAMI FL PORTLAND OR SAN DIEGO CA LONDON UK OPTION-BASED EQUITY STRATEGIES Roberto Obregon MEKETA INVESTMENT GROUP 100 Lowder Brook Drive, Suite 1100 Westwood, MA 02090 meketagroup.com February 2018 MEKETA INVESTMENT GROUP 100 LOWDER BROOK DRIVE SUITE 1100 WESTWOOD MA 02090 781 471 3500 fax 781 471 3411 www.meketagroup.com MEKETA INVESTMENT GROUP OPTION-BASED EQUITY STRATEGIES ABSTRACT Options are derivatives contracts that provide investors the flexibility of constructing expected payoffs for their investment strategies. Option-based equity strategies incorporate the use of options with long positions in equities to achieve objectives such as drawdown protection and higher income. While the range of strategies available is wide, most strategies can be classified as insurance buying (net long options/volatility) or insurance selling (net short options/volatility). The existence of the Volatility Risk Premium, a market anomaly that causes put options to be overpriced relative to what an efficient pricing model expects, has led to an empirical outperformance of insurance selling strategies relative to insurance buying strategies. This paper explores whether, and to what extent, option-based equity strategies should be considered within the long-only equity investing toolkit, given that equity risk is still the main driver of returns for most of these strategies. It is important to note that while option-based strategies seek to design favorable payoffs, all such strategies involve trade-offs between expected payoffs and cost. BACKGROUND Options are derivatives1 contracts that give the holder the right, but not the obligation, to buy or sell an asset at a given point in time and at a pre-determined price. -
A Glossary of Securities and Financial Terms
A Glossary of Securities and Financial Terms (English to Traditional Chinese) 9-times Restriction Rule 九倍限制規則 24-spread rule 24 個價位規則 1 A AAAC see Academic and Accreditation Advisory Committee【SFC】 ABS see asset-backed securities ACCA see Association of Chartered Certified Accountants, The ACG see Asia-Pacific Central Securities Depository Group ACIHK see ACI-The Financial Markets of Hong Kong ADB see Asian Development Bank ADR see American depositary receipt AFTA see ASEAN Free Trade Area AGM see annual general meeting AIB see Audit Investigation Board AIM see Alternative Investment Market【UK】 AIMR see Association for Investment Management and Research AMCHAM see American Chamber of Commerce AMEX see American Stock Exchange AMS see Automatic Order Matching and Execution System AMS/2 see Automatic Order Matching and Execution System / Second Generation AMS/3 see Automatic Order Matching and Execution System / Third Generation ANNA see Association of National Numbering Agencies AOI see All Ordinaries Index AOSEF see Asian and Oceanian Stock Exchanges Federation APEC see Asia Pacific Economic Cooperation API see Application Programming Interface APRC see Asia Pacific Regional Committee of IOSCO ARM see adjustable rate mortgage ASAC see Asian Securities' Analysts Council ASC see Accounting Society of China 2 ASEAN see Association of South-East Asian Nations ASIC see Australian Securities and Investments Commission AST system see automated screen trading system ASX see Australian Stock Exchange ATI see Account Transfer Instruction ABF Hong -
Pricing and Hedging of American Knock-In Options
Pricing and Hedging of American Knock-In Options FARID AITSAHLIA, LORENS IMHOF, AND TZE LEUNG LAI FARID AITSAHLIA American barrier options of the knock-in type involve as they do not have closed-form solutions, is a senior scientist at non-Markouian optimal stopping problems for early unlike their European-style counterparts (see DemandTec in Stanford, CA. exercise. They therefore cannot be priced via stan- Merton [1973] and Rubinstein and Reiner farid @stat.stanford.edu dard methods such as binomial or trinomial trees [1991]). LORENS IMHOF and finite-difference schemes for free-boundary par- Naive application of the Cox-Ross- is an assistant professor at tial differential equations. Rubinstein binomial tree method for barrier Institut ftir Statistik und options has been shown by Boyle and Lau Wirtschaftsniathematik in This article provides a modified tree method to [1994] to yield inaccurate values, even with Aachen, Germany. price these options. It also develops fast and accu- many steps. To address this problem, which [email protected] rate analytic approximations for the price and hedge stems from the position of the barrier relative TZE LEUNG LAI parameters. to the grid, a number of variants of the tree is a professor of statistics at method have been advanced. Stanford University. omplex derivatives have become Ritchken [1995] implements a trinomial [email protected] accepted instruments to tailor risk tree method. Cheuk and Vorst [1996| develop coverage for risk managers and a time-dependent shift for the trinomial tree, Cinvestors. Barrier-type options and Figlewski and Gao [1999[ introduce an have become important instruments, particu- adaptive mesh model that grafts high-resolution larly for the valuation of structured products lattices around points that cause the inaccuracies (see Banks [1994]). -
Option Prices Under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗
Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗ Massimo Guidolin† Allan Timmermann University of Virginia University of California, San Diego JEL codes: G12, D83. Abstract This paper shows that many of the empirical biases of the Black and Scholes option pricing model can be explained by Bayesian learning effects. In the context of an equilibrium model where dividend news evolve on a binomial lattice with unknown but recursively updated probabilities we derive closed-form pricing formulas for European options. Learning is found to generate asymmetric skews in the implied volatility surface and systematic patterns in the term structure of option prices. Data on S&P 500 index option prices is used to back out the parameters of the underlying learning process and to predict the evolution in the cross-section of option prices. The proposed model leads to lower out-of- sample forecast errors and smaller hedging errors than a variety of alternative option pricing models, including Black-Scholes and a GARCH model. ∗We wish to thank four anonymous referees for their extensive and thoughtful comments that greatly improved the paper. We also thank Alexander David, Jos´e Campa, Bernard Dumas, Wake Epps, Stewart Hodges, Claudio Michelacci, Enrique Sentana and seminar participants at Bocconi University, CEMFI, University of Copenhagen, Econometric Society World Congress in Seattle, August 2000, the North American Summer meetings of the Econometric Society in College Park, June 2001, the European Finance Association meetings in Barcelona, August 2001, Federal Reserve Bank of St. Louis, INSEAD, McGill, UCSD, Universit´edeMontreal,andUniversity of Virginia for discussions and helpful comments. -
Regulatory Circular RG16-044
Regulatory Circular RG16-044 Date: February 29, 2016 To: Trading Permit Holders From: Regulatory Division RE: Product Description and Margin and Net Capital Requirements - Asian Style Settlement FLEX Broad-Based Index Options - Cliquet Style Settlement FLEX Broad-Based Index Options KEY POINTS On March 21, 2016, Chicago Board Options Exchange, Incorporated (“CBOE” or “Exchange”) plans to commence trading Asian style settlement and Cliquet style settlement FLEX Broad-Based Index Options (“Asian options” and “Cliquet options,” respectively).1 Asian and Cliquet options are permitted only for broad-based indexes on which options are eligible for trading on CBOE. Asian and Cliquet options may not be exercised prior to the expiration date and must have a $100 multiplier. Asian style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is based on an arithmetic average of the specified closing prices of an underlying broad-based index taken on 12 predetermined monthly observation dates. Cliquet style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is equal to the greater of $0 or the sum of capped monthly returns (i.e., percent changes in the closing value of the underlying broad-based index from one month to the next month) applied over 12 predetermined monthly observation dates. The monthly observation date is set by the parties to a transaction. It is the date each month on which the value of the underlying broad-based index is observed for the purpose of calculating the exercise settlement value.