Lower Level Relationships in the Mushroom Genus Cortinarius (Basidiomycota, Agaricales): a Comparison of RPB1, RPB2, and ITS Phylogenies

Total Page:16

File Type:pdf, Size:1020Kb

Lower Level Relationships in the Mushroom Genus Cortinarius (Basidiomycota, Agaricales): a Comparison of RPB1, RPB2, and ITS Phylogenies ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2005) xxx–xxx www.elsevier.com/locate/ympev Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): A comparison of RPB1, RPB2, and ITS phylogenies T.G. Frøslev a,¤, P.B. Matheny b, D.S. Hibbett b a Department of Microbiology, Institute of Biology, University of Copenhagen, Øster Farimagsgade 2D, DK-1353 Copenhagen K, Denmark b Biology Department, Clark University 950 Main St., Worcester, MA 01610, USA Received 19 April 2005; revised 16 June 2005; accepted 16 June 2005 Abstract We sampled and analyzed approximately 2900 bp across the three loci from 54 taxa belonging to a taxonomically diYcult group of Cortinarius subgenus Phlegmacium. The combined analyses of ITS and variable regions of RPB1 and RPB2 greatly increase the resolution and nodal support for phylogenies of these closely related species belonging to clades that until now have proven very diYcult to resolve with the ribosomal markers, nLSU and ITS. We present the Wrst study of the utility of variable regions of the genes encoding the two largest subunits of RNA polymerase II (RPB1 and RPB2) for inferring the phylogeny of mushroom-forming fungi in combination with and compared to the widely used ribosomal marker ITS. The studied region of RPB1 contains an intron of the size and variability of ITS along with many variable positions in coding regions. Though almost entirely coding, the studied region of RPB2 is more variable than ITS. Both RNA polymerase II genes were alignable across all taxa. Our results indicate that several sec- tions of Cortinarius need redeWnition, and that several taxa treated at subspeciWc and varietal level should be treated at speciWc level. We suggest a new section for the two species, C. caesiocortinatus and C. prasinocyaneus, which constitute a well-supported separate lineage. We speculate that sequence information from RNA polymerase II genes have the potential for resolving phylogenetic prob- lems at several levels of the diverse and taxonomically very challenging genus Cortinarius. 2005 Elsevier Inc. All rights reserved Keywords: Cortinariaceae; Cortinarius; ITS; Molecular systematics; Multigene phylogeny; Phlegmacium; RNA-polymerase II genes 1. Introduction studies have used information from the internal tran- scribed spacer region (ITS) (e.g., Aanen et al., 2000a; 1.1. RNA-polymerase genes for resolving phylogenetic Hibbett et al., 1995; Hughes et al., 2001; Miller and relationships of Cortinarius Buyck, 2002). Studies based on ITS have often included the adjacent variable domains of nLSU (e.g., Geml et al., Until recently phylogenetic relationships of mush- 2004; Vellinga, 2004), and some studies (e.g., Aanen room-forming fungi have been inferred almost entirely et al., 2000a; Vellinga, 2001) have used information from by sequence data from the nuclear (and mitochondrial) the intergenic spacer region (IGS). Characteristic for ribosomal RNA cistron. For species level analyses most these studies has been the relatively low amount of reso- lution and nodal support. ITS often strongly supports * phylogenetic species but fails to provide robust resolu- Corresponding author. Fax: +45 35 32 23 21. tion of the branching order among those species. This E-mail addresses: [email protected] (T.G. Frøslev), pma- [email protected] (P.B. Matheny), [email protected] (D.S. has among many other studies been evident in studies of Hibbett). the mushroom genera Lentinula (Hibbett et al., 1995), 1055-7903/$ - see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2005.06.016 ARTICLE IN PRESS 2 T.G. Frøslev et al. / Molecular Phylogenetics and Evolution xxx (2005) xxx–xxx Hebeloma (Aanen et al., 2000b), Lepiota ss. lato (Vel- more than 4125 published names in Cortinarius (Index linga, 2003; Vellinga et al., 2003) and Sparassis (Wang fungorum, CABI Bioscience Databases, http://www.inde et al., 2004). In Cortinarius inference with traditional xfungorum.org). Many of these have been shown to be ribosomal genes (ITS and nLSU) has also provided very synonyms, and more are yet to be listed as such. New little phylogenetic resolution (Garnica et al., 2003; taxa are, however, continuously being described, even Høiland and Holst-Jensen, 2000; Liu et al., 1997; Peint- from well-studied areas such as Europe (Antonini and ner et al., 2001; Peintner et al., 2002, 2004; Seidl, 2000). Antonini, 2002; Brandrud, 1996; Brandrud et al., 1989– Though sequence data from nuclear single-copy pro- 1998; Consiglio, 1996; Moser and Peintner, 2002; tein-coding genes have shown promising results for sev- Moënne-Loccoz et al., 1991–2004) and 2000 may prove eral mushroom genera (Kretzer and Bruns, 1999; Thon to be a conservative estimate of the actual number of and Royse, 1999), there are still remarkably few multi- species. The fruiting bodies of most species are typical gene phylogenetic studies of mushrooms incorporating mushrooms with a stipe and a pileus with a lamellate information from these genes (Lutzoni et al., 2004). So spore-producing layer. Most species have a cobweb-like far, phylogenetics of Cortinarius have been based exclu- partial veil protecting the young lamellae—the cortina, sively on rDNA analyses, but multi-locus studies includ- from which the generic name is derived. They have ing protein-coding genes are underway (Peintner; brown ornamented spores giving a cinnamon brown to personal communication). Sequences from RNA poly- rusty brown spore deposit. Apart from these unifying merase II genes have proven to be eVective for inference characters, a great inter- and intra-speciWc morphologi- of phylogenies in many diVerent organisms (see refer- cal variation is exhibited. All species form ectomycorrhi- ences in Matheny, 2005). Sequence data from RPB2 zas (a form of mutualistic symbiosis between fungi and have successfully been applied in several recent phyloge- plants) with a variety of woody hosts mainly belonging netic studies of fungal groups at diVerent levels (Chav- to Fagales, Pinaceae, and Salicaceae, but species of Cist- erri et al., 2003; Hansen et al., 2005; Liu and Hall, 2004; aceae, Dipterocarpaceae, Eucalyptus, and Dryas are also Liu et al., 1999; Lutzoni et al., 2004; Matheny, 2005; known as mycorrhizal hosts of Cortinarius. They are by Matheny et al., 2002; Reeb et al., 2004; Tanabe et al., far the dominant ectomycorrhizal fungal group in many 2004; Wang et al., 2004), but the performance of RPB1 northern temperate ectotrophic ecosystems both in at species level is still relatively unknown (Kropp and terms of species diversity and above ground biomass Matheny, 2004; Matheny, 2005; Matheny and Ammirati, (Brandrud et al., 1989–1998). 2003). The infrageneric taxonomy of Cortinarius has largely Matheny (2005) showed that combined information been based upon macro-morphology, and is a matter of from RPB1, RPB2, and nLSU sequences improved phy- much debate. Several major classiWcation schemes have logenetic inference in Inocybe, a genus of ectomycorrhi- been proposed (Kühner, 1980; Kühner and Romagnesi, zal agarics believed to share evolutionary aYnities with 1953; Melot, 1990; Moser, 1983; Moënne-Loccoz et al., Cortinarius (Kühner, 1980; Singer, 1986). The study 1991–2004; Orton, 1958). In this paper, we follow the demonstrated the potential of RNA polymerase II genes infrageneric taxonomy of Melot (1990) as in Brandrud for improving phylogenetic inference of relationships et al. (1989–1998). Several “top-down” studies have usually addressed with the ribosomal gene nLSU, and a attempted to address the phylogeny of the whole genus potential for utility at even lower levels was hypothe- with traditional ribosomal markers (ITS, nLSU), but sized. these have resulted in trees with very little resolution Here, we sampled variable regions of RPB1 between (especially at basal levels) and low nodal support conserved domains A and C and RPB2 between con- (Garnica et al., 2003; Høiland and Holst-Jensen, 2000; served domains 6 and 7 in combination with ITS to infer Peintner et al., 2001, 2002, 2004). Many traditional taxo- the phylogeny of a group of closely related mushroom nomic units have been shown to be artiWcial. Peintner species (Cortinarius subgenus Phlegmacium pro parte)— et al. (2002) showed that some groups, formerly treated a taxonomically and phylogenetically diYcult group, as separate genera, are derived within Cortinarius (i.e., where sequence data from nLSU and ITS have provided Cuphocybe, Rozites, and Rapacea). Furthermore, some very little resolution and nodal support (Garnica et al., sequestrate (truZe- of puVball-like) genera (spore pro- 2003; Peintner et al., 2004). This study represents the Wrst ducing tissue not exposed) have been shown to be comparison of RNA polymerase II genes and ITS for derived within Cortinarius (i.e., Quadrispora, Thaxterog- phylogenetic purposes. aster, and Hymenogaster pro parte) (Peintner et al., 2001). The genus as such (including the derived groups) 1.2. The genus Cortinarius is well supported as monophyletic (Moncalvo et al., 2002; Peintner et al., 2001, 2004) belonging to the euaga- Cortinarius is the largest of the mushroom-forming ric clade (tAgaricales) of the fungal tree of life (Mon- fungal genera (Agaricales ss. Singer (1986) t the euaga- calvo et al., 2002). The classical major subgenera (i.e., ric clade ss. Moncalvo et al. (2002)). At present there are Cortinarius, Telamonia, Myxacium, and Phlegmacium), ARTICLE IN PRESS T.G. Frøslev et al. / Molecular Phylogenetics and Evolution
Recommended publications
  • Strážovské Vrchy Mts., Resort Podskalie; See P. 12)
    a journal on biodiversity, taxonomy and conservation of fungi No. 7 March 2006 Tricholoma dulciolens (Strážovské vrchy Mts., resort Podskalie; see p. 12) ISSN 1335-7670 Catathelasma 7: 1-36 (2006) Lycoperdon rimulatum (Záhorská nížina Lowland, Mikulášov; see p. 5) Cotylidia pannosa (Javorníky Mts., Dolná Mariková – Kátlina; see p. 22) March 2006 Catathelasma 7 3 TABLE OF CONTENTS BIODIVERSITY OF FUNGI Lycoperdon rimulatum, a new Slovak gasteromycete Mikael Jeppson 5 Three rare tricholomoid agarics Vladimír Antonín and Jan Holec 11 Macrofungi collected during the 9th Mycological Foray in Slovakia Pavel Lizoň 17 Note on Tricholoma dulciolens Anton Hauskknecht 34 Instructions to authors 4 Editor's acknowledgements 4 Book notices Pavel Lizoň 10, 34 PHOTOGRAPHS Tricholoma dulciolens Vladimír Antonín [1] Lycoperdon rimulatum Mikael Jeppson [2] Cotylidia pannosa Ladislav Hagara [2] Microglossum viride Pavel Lizoň [35] Mycena diosma Vladimír Antonín [35] Boletopsis grisea Petr Vampola [36] Albatrellus subrubescens Petr Vampola [36] visit our web site at fungi.sav.sk Catathelasma is published annually/biannually by the Slovak Mycological Society with the financial support of the Slovak Academy of Sciences. Permit of the Ministry of Culture of the Slovak rep. no. 2470/2001, ISSN 1335-7670. 4 Catathelasma 7 March 2006 Instructions to Authors Catathelasma is a peer-reviewed journal devoted to the biodiversity, taxonomy and conservation of fungi. Papers are in English with Slovak/Czech summaries. Elements of an Article Submitted to Catathelasma: • title: informative and concise • author(s) name(s): full first and last name (addresses as footnote) • key words: max. 5 words, not repeating words in the title • main text: brief introduction, methods (if needed), presented data • illustrations: line drawings and color photographs • list of references • abstract in Slovak or Czech: max.
    [Show full text]
  • Chorioactidaceae: a New Family in the Pezizales (Ascomycota) with Four Genera
    mycological research 112 (2008) 513–527 journal homepage: www.elsevier.com/locate/mycres Chorioactidaceae: a new family in the Pezizales (Ascomycota) with four genera Donald H. PFISTER*, Caroline SLATER, Karen HANSENy Harvard University Herbaria – Farlow Herbarium of Cryptogamic Botany, Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA article info abstract Article history: Molecular phylogenetic and comparative morphological studies provide evidence for the Received 15 June 2007 recognition of a new family, Chorioactidaceae, in the Pezizales. Four genera are placed in Received in revised form the family: Chorioactis, Desmazierella, Neournula, and Wolfina. Based on parsimony, like- 1 November 2007 lihood, and Bayesian analyses of LSU, SSU, and RPB2 sequence data, Chorioactidaceae repre- Accepted 29 November 2007 sents a sister clade to the Sarcosomataceae, to which some of these taxa were previously Corresponding Editor: referred. Morphologically these genera are similar in pigmentation, excipular construction, H. Thorsten Lumbsch and asci, which mostly have terminal opercula and rounded, sometimes forked, bases without croziers. Ascospores have cyanophilic walls or cyanophilic surface ornamentation Keywords: in the form of ridges or warts. So far as is known the ascospores and the cells of the LSU paraphyses of all species are multinucleate. The six species recognized in these four genera RPB2 all have limited geographical distributions in the northern hemisphere. Sarcoscyphaceae ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Sarcosomataceae SSU Introduction indicated a relationship of these taxa to the Sarcosomataceae and discussed the group as the Chorioactis clade. Only six spe- The Pezizales, operculate cup-fungi, have been put on rela- cies are assigned to these genera, most of which are infre- tively stable phylogenetic footing as summarized by Hansen quently collected.
    [Show full text]
  • Peziza and Pezizaceae Inferred from Multiple Nuclear Genes: RPB2, -Tubulin, and LSU Rdna
    Molecular Phylogenetics and Evolution 36 (2005) 1–23 www.elsevier.com/locate/ympev Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, -tubulin, and LSU rDNA Karen Hansen ¤, Katherine F. LoBuglio, Donald H. PWster Harvard University Herbaria, Cambridge, MA 02138, USA Received 5 May 2004; revised 17 December 2004 Available online 22 April 2005 Abstract To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the sec- ond largest subunit of RNA polymerase II) and -tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truZe) pezizaceous genera. Analyses of the combined LSU, RPB2, and -tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 Wne-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, conWrming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased conWdence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three- gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and -tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the -tubulin region.
    [Show full text]
  • SOMA News March 2011
    VOLUME 23 ISSUE 7 March 2011 SOMA IS AN EDUCATIONAL ORGANIZATION DEDICATED TO MYCOLOGY. WE ENCOURAGE ENVIRONMENTAL AWARENESS BY SHARING OUR ENTHUSIASM THROUGH PUBLIC PARTICIPATION AND GUIDED FORAYS. WINTER/SPRING 2011 SPEAKER OF THE MONTH SEASON CALENDAR March Connie and Patrick March 17th » Meeting—7pm —“A Show and Tell”— Sonoma County Farm Bureau Speaker: Connie Green & Patrick March 17th—7pm Hamilton Foray March. 19th » Salt Point April April 21st » Meeting—7pm Sonoma County Farm Bureau Speaker: Langdon Cook Foray April 23rd » Salt Point May May 19th » Meeting—7pm Sonoma County Farm Bureau Speaker: Bob Cummings Foray May: Possible Morel Camping! eparated at birth but from the same litter Connie Green and Patrick Hamilton have S traveled (endured?) mushroom journeys together for almost two decades. They’ve been to the humid and hot jaguar jungles of Chiapas chasing tropical mushrooms and to EMERGENCY the cloud forests of the Sierra Madre for boletes and Indigo milky caps. In the cold and wet wilds of Alaska they hiked a spruce and hemlock forest trail to watch grizzly bears MUSHROOM tearing salmon bellies just a few yards away. POISONING IDENTIFICATION In the remote Queen Charlotte Islands their bush plane flew over “fields of golden chanterelles,” landed on the ocean, and then off into a zany Zodiac for a ride over a cold After seeking medical attention, contact and roiling sea alongside some low flying puffins to the World Heritage Site of Ninstints. Darvin DeShazer for identification at The two of them have gazed at glaciers and berry picked on muskeg bogs. More than a (707) 829-0596.
    [Show full text]
  • Studies of Species of Hebeloma (FR.) KUMMER from the Great Lakes Region of North America I
    ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Studies of Species of Hebeloma (FR.) KUMMER from the Great Lakes Region of North America I. *) Alexander H. SMITH Professor Emeritus, University Herbarium University of Michigan Ann Arbor, Michigan, USA Introduction The genus Hebeloma is a member of the family Cortinariaceae of the order Agaricales. In recent times it has emerged from relative taxonomic obscurity largely, apparently, because most of its species are thought to be mycorrhiza formers with our forest trees, and this phase of forest ecology is now much in the public eye. The genus, as recognized by SMITH, EVENSON & MITCHEL (1983) is essentially that of SINGER (1975) with some adjustments in the infrageneric categories recognized. It is also, the same, for the most part, as the concept proposed by the late L. R. HESLER in his unfinished manuscript on the North American species which SMITH is now engaged in completing. In the past there have been few treatments of the North American species which recognized more than a dozen species. MURRILL (1917) recognized 49 species but a number of these have been transferred to other genera. In the recent past, how- ever, European mycologists have showed renewed interest in the genus as is to be noted by the papers of ROMAGNESI (1965), BRUCHET (1970), and MOSER (1978). The species included here are some that have been observed for years by the author (1929—1983) in local localities, and the obser- vations on them have clarified their identity and allowed their probable relationships to be proposed.
    [Show full text]
  • INTRODUCTION Biodiversity of Agaricomycetes Basidiomes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital DARWINIANA, nueva serie 1(1): 67-75. 2013 Versión final, efectivamente publicada el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS Gonzalo M. Romano1, Javier A. Calcagno2 & Bernardo E. Lechner1 1Laboratorio de Micología, Fitopatología y Liquenología, Departamento de Biodiversidad y Biología Experimental, Programa de Plantas Medicinales y Programa de Hongos que Intervienen en la Degradación Biológica (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Piso 4, Laboratorio 7, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; [email protected] (author for correspondence). 2Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico - Departamento de Ciencias Natu- rales y Antropológicas, Instituto Superior de Investigaciones, Hidalgo 775, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina. Abstract. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversity of Agaricomycetes basidiomes asso- ciated to Salix and Populus (Salicaceae) plantations. Darwiniana, nueva serie 1(1): 67-75. Although plantations have an artificial origin, they modify environmental conditions that can alter native fungi diversity. The effects of forest management practices on a plantation of willow (Salix) and poplar (Populus) over Agaricomycetes basidiomes biodiversity were studied for one year in an island located in Paraná Delta, Argentina. Dry weight and number of basidiomes were measured. We found 28 species belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales.
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • Hebeloma Alvarense, a New Species from Estonia
    Karstenia 44: 57-60, 2004 Hebeloma alvarense, a new species from Estonia JAN VESTERHOLT and JUKKA VAURAS VESTERHOLT, J. & VAURAS, J. 2004: Hebeloma alvarense, a new species from Estonia. - Karstenia 44: 57-60. 2004. Helsinki. ISSN 0453-3402. Hebeloma alvarense Vesterh. & Vauras (Basidiomycota, Agaricales) is described as a new species from open alvar pine forest of Western Estonia. It belongs to the section Denudata (Fr.) Sacc., and it is characterized macroscopically by a cinnamon-coloured pileus and a \·ery fragile, floccose stipe. Key words: Agaricales, Estonia, Hebeloma, taxonomy Jan Vesterholt, Botanical Museum, Goth.ersgade 130, DK-1123 Copenhagen K, Denmark Jukka Vauras, Biological Collections of Abo Akademi University, Herbarium, Fl-20014 University of Turku, Finland Introduction A special habitat type known as alvar has devel­ Estonia. Even in the field the species was eye­ oped on limestone areas, especially on the coast catching being cinnamon, distinctly zoned, and and islands of Estonia, as well as on the islands having broad lamellae and a very fragile stipe. Oland and Gotland of Sweden. Different types of Later, it was found to have a combination of char­ alvar habitats include alvar forests, alvar shrub­ acters, which do not match any of the known spe­ lands, alvar grasslands and alvar heaths. They cies of the genus. are characterized by a thin mineral soil layer upon Microscopical characters were measured and limestone or calcareous gravel. The productivity drawn in 5% KOH. The quantitative values D1, is relatively low, mainly because of the lack of D4, 03, P2 used for spore characters in this paper moisture.
    [Show full text]
  • Three New Species of Cortinarius Subgenus Telamonia (Cortinariaceae, Agaricales) from China
    A peer-reviewed open-access journal MycoKeys 69: 91–109 (2020) Three new species in Cortinarius from China 91 doi: 10.3897/mycokeys.69.49437 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Three new species of Cortinarius subgenus Telamonia (Cortinariaceae, Agaricales) from China Meng-Le Xie1,2, Tie-Zheng Wei3, Yong-Ping Fu2, Dan Li2, Liang-Liang Qi4, Peng-Jie Xing2, Guo-Hui Cheng5,2, Rui-Qing Ji2, Yu Li2,1 1 Life Science College, Northeast Normal University, Changchun 130024, China 2 Engineering Research Cen- ter of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China 3 State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China 4 Microbiology Research Institute, Guangxi Academy of Agriculture Sciences, Nanning, 530007, China 5 College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China Corresponding authors: Rui-Qing Ji ([email protected]), Yu Li ([email protected]) Academic editor: O. Raspé | Received 16 December 2019 | Accepted 23 June 2020 | Published 14 July 2020 Citation: Xie M-L, Wei T-Z, Fu Y-P, Li D, Qi L-L, Xing P-J, Cheng G-H, Ji R-Q, Li Y (2020) Three new species of Cortinarius subgenus Telamonia (Cortinariaceae, Agaricales) from China. MycoKeys 69: 91–109. https://doi. org/10.3897/mycokeys.69.49437 Abstract Cortinarius is an important ectomycorrhizal genus that forms a symbiotic relationship with certain trees, shrubs and herbs. Recently, we began studying Cortinarius in China and here we describe three new spe- cies of Cortinarius subg. Telamonia based on morphological and ecological characteristics, together with phylogenetic analyses.
    [Show full text]
  • THE LARGER CUP FUNGI in BRITAIN - Part 2 Pezizaceae (Excluding Peziza & Plicaria) Brian Spooner Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE
    Field Mycology Volume 2(1), January 2001 THE LARGER CUP FUNGI IN BRITAIN - part 2 Pezizaceae (excluding Peziza & Plicaria) Brian Spooner Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE he first part of this series (Spooner, 2000) provided a brief introduction to cup fungi or ‘discomycetes’, and considered in particular the ‘operculate’ species, those in T which the ascus opens (dehisces) via an apical lid or operculum.These constitute the order Pezizales and include most of the larger discomycete species. A key to the 12 families of Pezizales represented in Britain was given. In the present part, a key to the British genera of the Pezizaceae is provided, together with brief descriptions of the genera and keys to the species of all genera other than Peziza and Plicaria.These two genera, which include over sixty species in Britain alone, will be considered in Part 3. A glossary of technical terms is given at the end of the article. Pezizaceae Dumort. Characterised by operculate, thin-walled, amyloid asci and uninucleate spores with thin or rarely somewhat thickened walls. Key to British Genera of Pezizaceae 1. Asci indehiscent; ascomata subhypogeous or developed in litter, subglobose or irregular in form; spores globose, ornamented, purple-brown at maturity, eguttulate . Sphaerozone 1. Asci dehiscent; ascomata epigeous, rarely hypogeous at first, on various substrates, cupulate to discoid or pulvinate, sometimes short-stipitate, rarely sparassoid; spores globose or ellip- soid, smooth or ornamented, hyaline or brownish, guttulate or eguttulate . 2 2. Ascus apex strongly blue in iodine, rest of wall diffusely blue in iodine or not .
    [Show full text]
  • A MYCOLEGIUM of LITERATURE the New North America Mushroom Species of 2015 Else C
    Cortinarius vanduzerensis, from the type locality in Oregon, unmistakable with its and the species, growing with slimy dark brown cap, Pseudotsuga, Tsuga and Abies in and slimy lilac-purple Oregon, Washington, and British stem, right? Alas, it is Columbia has been described now postulated that this as Cortinarius seidliae. Images species is only known courtesy of M. G. Wood and N. Siegel. A MYCOLEGIUM OF LITERATURE The new North America mushroom species of 2015 Else C. Vellinga round 30 new North American species of macrofungi they are in general very difficult to recognize anyway; without saw the light in 2015 – leaving 2014 as the top year pictures for comparison it is just impossible. with 58 species. In 2015, 14 new Cortinarius species, To speed up the description of new species, several Aan Entoloma, one wax cap, two Russulas, one bolete, several journals now offer the opportunity to publish single species polypores, two Craterellus species, one Geastrum, an descriptions as part of a much bigger article in which many Auricularia, and a number of Tremella species were presented different authors each describe only one or a few new species. as new, plus two Otidea species representing the Ascomycota. Several of the new Cortinarius and Russula species were As in 2014, many of the new taxa were published in Index published as part of these big community efforts. For the Fungorum, without any supporting illustrations and without individual author this is advantageous, as there will be more phylogenetic trees showing the placement of the new species. citations of the whole article than for a single species article.
    [Show full text]
  • Hebelomina (Agaricales) Revisited and Abandoned
    Plant Ecology and Evolution 151 (1): 96–109, 2018 https://doi.org/10.5091/plecevo.2018.1361 REGULAR PAPER Hebelomina (Agaricales) revisited and abandoned Ursula Eberhardt1,*, Nicole Schütz1, Cornelia Krause1 & Henry J. Beker2,3,4 1Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany 2Rue Père de Deken 19, B-1040 Bruxelles, Belgium 3Royal Holloway College, University of London, Egham, Surrey TW20 0EX, United Kingdom 4Plantentuin Meise, Nieuwelaan 38, B-1860 Meise, Belgium *Author for correspondence: [email protected] Background and aims – The genus Hebelomina was established in 1935 by Maire to accommodate the new species Hebelomina domardiana, a white-spored mushroom resembling a pale Hebeloma in all aspects other than its spores. Since that time a further five species have been ascribed to the genus and one similar species within the genus Hebeloma. In total, we have studied seventeen collections that have been assigned to these seven species of Hebelomina. We provide a synopsis of the available knowledge on Hebelomina species and Hebelomina-like collections and their taxonomic placement. Methods – Hebelomina-like collections and type collections of Hebelomina species were examined morphologically and molecularly. Ribosomal RNA sequence data were used to clarify the taxonomic placement of species and collections. Key results – Hebelomina is shown to be polyphyletic and members belong to four different genera (Gymnopilus, Hebeloma, Tubaria and incertae sedis), all members of different families and clades. All but one of the species are pigment-deviant forms of normally brown-spored taxa. The type of the genus had been transferred to Hebeloma, and Vesterholt and co-workers proposed that Hebelomina be given status as a subsection of Hebeloma.
    [Show full text]