MYSTERY INSECT IDENTIFIED by Lyn Chimera

Total Page:16

File Type:pdf, Size:1020Kb

MYSTERY INSECT IDENTIFIED by Lyn Chimera DECEMBER 2019 WNY GARDENING MATTERS ARTICLE 129 MYSTERY INSECT IDENTIFIED By Lyn Chimera In late October an insect sample was sent to the Hotline Here is some more information on hairy rove beetles, or office. It was 2 of the same insect a woman found in her read more at the Year of Nature Blog. basement. They were black, cream striped and extremely fuzzy. Under the microscope the fuzziness was amazing! I couldn’t figure it out and left it for the MG volunteer the next day. She didn’t know and neither did Sharon so the sample was sent to Cornell. The mystery insect was a hairy rove beetle (Creophilus maxillosus). Rove beetles belong to the family Staphylinidae, the largest family of beetles in North America with about 4360 species identified so far! The hairy rove beetle is among the largest at between 12 and 23 mm. It’s the most distinctive rove beetle due to its hair-like setae (formed from a single epidermal cell) covering the elytra (modified, hardened fore-wing of certain beetles) and the abdomen. Rove beetles are scavengers of carrion, carrion maggots and fly larvae. They are beneficial insects as they are predators of pest fly larva. They are also helpful in forensic entomology (think CSI). When disturbed they curl up or raise their tail like a scorpion. They secrete a chemical substance that is irritating deterring predators. Female hairy rove beetles are very prolific laying up to 8 eggs/day and 500 throughout their lifetime. The offspring from 1 female can number 422,000 in only 3 generations! Cornell Cooperative Extension is an employer and educator recognized for valuing AA/EEO, Hairy rove beetles are harmless to people but they can Protected Veterans, and Individuals with enter homes accidentally which is what happened to the Disabilities; and provides equal program and employment opportunities. woman who sent in the samples. Hairy rove beetles are found across the northern hemisphere around the world. Their range includes all of North America. This is what I love about the Hotline! Info for this article was adapted from a paper written by Nicholas Johnson, Philip Stanley and Andrea Lucky © Copyright 2019 All Rights Reserved published by the Entomology & Nematology Department of the University of Florida..
Recommended publications
  • Coleoptera Species of Forensic Importance from Brazil: an Updated List
    G Model RBE-49; No. of Pages 11 ARTICLE IN PRESS Revista Brasileira de Entomologia xxx (2015) xxx–xxx REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution w ww.rbentomologia.com Systematics, Morphology and Biogeography Coleoptera species of forensic importance from Brazil: an updated list a,∗ a b Lúcia Massutti de Almeida , Rodrigo César Corrêa , Paschoal Coelho Grossi a Laboratório de Sistemática e Bioecologia de Coleoptera, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, PR, Brazil b Universidade Federal Rural de Pernambuco, Recife, PE, Brazil a b s t r a c t a r t i c l e i n f o Article history: A list of the Coleoptera of importance from Brazil, based on published records was compiled. The checklist Received 21 May 2015 contains 345 species of 16 families allocated to 16 states of the country. In addition, three species of two Accepted 14 August 2015 families are registered for the first time. The fauna of Coleoptera of forensic importance is still not entirely Available online xxx known and future collection efforts and taxonomic reviews could increase the number of known species Associate Editor: Rodrigo Krüger considerably in the near future. © 2015 Published by Elsevier Editora Ltda. on behalf of Sociedade Brasileira de Entomologia. This is an Keywords: Beetles open access article under the CC BY-NC-ND license Cleridae (http://creativecommons.org/licenses/by-nc-nd/4.0/). Dermestidae Forensic entomology Silphidae Introduction behaviour are needed before their importance can be fully under- stood (see Midgley et al., 2010). The diversity of Coleoptera and The development of forensic entomology in Brazil was well the lack of taxonomic studies have direct effect in how the beetles reported by Pujol-Luz et al.
    [Show full text]
  • Local and Landscape Effects on Carrion-Associated Rove Beetle (Coleoptera: Staphylinidae) Communities in German Forests
    insects Article Local and Landscape Effects on Carrion-Associated Rove Beetle (Coleoptera: Staphylinidae) Communities in German Forests Sandra Weithmann 1,* , Jonas Kuppler 1 , Gregor Degasperi 2, Sandra Steiger 3 , Manfred Ayasse 1 and Christian von Hoermann 4 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany; [email protected] (J.K.); [email protected] (M.A.) 2 Richard-Wagnerstraße 9, 6020 Innsbruck, Austria; [email protected] 3 Department of Evolutionary Animal Ecology, University of Bayreuth, 95447 Bayreuth, Germany; [email protected] 4 Department of Conservation and Research, Bavarian Forest National Park, 94481 Grafenau, Germany; [email protected] * Correspondence: [email protected] Received: 15 October 2020; Accepted: 21 November 2020; Published: 24 November 2020 Simple Summary: Increasing forest management practices by humans are threatening inherent insect biodiversity and thus important ecosystem services provided by them. One insect group which reacts sensitively to habitat changes are the rove beetles contributing to the maintenance of an undisturbed insect succession during decomposition by mainly hunting fly maggots. However, little is known about carrion-associated rove beetles due to poor taxonomic knowledge. In our study, we unveiled the human-induced and environmental drivers that modify rove beetle communities on vertebrate cadavers. At German forest sites selected by a gradient of management intensity, we contributed to the understanding of the rove beetle-mediated decomposition process. One main result is that an increasing human impact in forests changes rove beetle communities by promoting generalist and more open-habitat species coping with low structural heterogeneity, whereas species like Philonthus decorus get lost.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Midsouth Entomologist 5: 39-53 ISSN: 1936-6019
    Midsouth Entomologist 5: 39-53 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Research Article Insect Succession on Pig Carrion in North-Central Mississippi J. Goddard,1* D. Fleming,2 J. L. Seltzer,3 S. Anderson,4 C. Chesnut,5 M. Cook,6 E. L. Davis,7 B. Lyle,8 S. Miller,9 E.A. Sansevere,10 and W. Schubert11 1Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, e-mail: [email protected] 2-11Students of EPP 4990/6990, “Forensic Entomology,” Mississippi State University, Spring 2012. 2272 Pellum Rd., Starkville, MS 39759, [email protected] 33636 Blackjack Rd., Starkville, MS 39759, [email protected] 4673 Conehatta St., Marion, MS 39342, [email protected] 52358 Hwy 182 West, Starkville, MS 39759, [email protected] 6101 Sandalwood Dr., Madison, MS 39110, [email protected] 72809 Hwy 80 East, Vicksburg, MS 39180, [email protected] 850102 Jonesboro Rd., Aberdeen, MS 39730, [email protected] 91067 Old West Point Rd., Starkville, MS 39759, [email protected] 10559 Sabine St., Memphis, TN 38117, [email protected] 11221 Oakwood Dr., Byhalia, MS 38611, [email protected] Received: 17-V-2012 Accepted: 16-VII-2012 Abstract: A freshly-euthanized 90 kg Yucatan mini pig, Sus scrofa domesticus, was placed outdoors on 21March 2012, at the Mississippi State University South Farm and two teams of students from the Forensic Entomology class were assigned to take daily (weekends excluded) environmental measurements and insect collections at each stage of decomposition until the end of the semester (42 days). Assessment of data from the pig revealed a successional pattern similar to that previously published – fresh, bloat, active decay, and advanced decay stages (the pig specimen never fully entered a dry stage before the semester ended).
    [Show full text]
  • Insect Timing and Succession on Buried Carrion in East Lansing, Michigan
    INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTERS OF SCIENCE Entomology 2012 ABSTRACT INSECT TIMING AND SUCCESSION ON BURIED CARRION IN EAST LANSING, MICHIGAN By Emily Christine Pastula This study examined pig carcasses buried at two different depths, 30 and 60 cm, to determine if insects are able to colonize buried carcasses, when they arrive at each depth, and what fauna are present over seven sampling dates to establish an insect succession database on buried carrion in East Lansing, Michigan. Thirty-eight pigs were buried, 18 at 30 cm and 20 at 60 cm. Four control carcasses were placed on the soil surface. Three replicates at each depth were exhumed after 3 days, 7 days, 14 days, 21 days, 30 days, and 60 days. One pig was also exhumed from 60 cm after 90 days and another after 120 days. Sarcophaga bullata (Diptera: Sarcophagidae) and Hydrotaea sp. (Diptera: Muscidae) were found colonizing buried carrion 5 days after burial at 30 cm. Insect succession at 30 cm proceeded with flesh and muscid flies being the first to colonize, followed by blow flies. Insects were able to colonize carcasses at 60 cm and Hydrotaea sp. and Megaselia scalaris (Diptera: Phoridae), were collected 7 days after burial. Insect succession at 60 cm did not proceed similarly as predicted, instead muscid and coffin flies were the only larvae collected. Overall these results reveal post-burial interval (PBI) estimates for forensic investigations in mid-Michigan during the summer, depending on climatic and soil conditions.
    [Show full text]
  • Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
    Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state.
    [Show full text]
  • The Field Museum 2011 Annual Report to the Board of Trustees
    THE FIELD MUSEUM 2011 ANNUAL REPORT TO THE BOARD OF TRUSTEES COLLECTIONS AND RESEARCH Office of Collections and Research, The Field Museum 1400 South Lake Shore Drive Chicago, IL 60605-2496 USA Phone (312) 665-7811 Fax (312) 665-7806 http://www.fieldmuseum.org - This Report Printed on Recycled Paper - 1 CONTENTS 2011 Annual Report ..................................................................................................................................... 3 Collections and Research Committee of the Board of Trustees ................................................................. 8 Encyclopedia of Life Committee and Repatriation Committee of the Board of Trustees ............................ 9 Staff List ...................................................................................................................................................... 10 Publications ................................................................................................................................................. 15 Active Grants .............................................................................................................................................. 39 Conferences, Symposia, Workshops and Invited Lectures ........................................................................ 56 Museum and Public Service ...................................................................................................................... 64 Fieldwork and Research Travel ...............................................................................................................
    [Show full text]
  • Key to the British Genera of Subfamily Staphylininae
    Key to the British genera of subfamily Staphylininae Parts translated from the German key by Arved Lompe, which is based on the keys by Lohse, Ganglbauer and Reitter and parts adapted from Joy (1932) References Lompe (2013) published at http://www.coleo-net.de/coleo/texte/staphylininae.htm#Xantholinini Joy N.H. (1932) A Practical Handbook of British Beetles, published by H. F. & G. Witherby Checklist of genera From the Checklist of Beetles of the British Isles, 2012 edition, edited by A. G. Duff. (available from www.coleopterist.org.uk/checklist.htm). Tribe STAPHYLININI Latreille, 1802 Subtribe STAPHYLININA Latreille, 1802 Subtribe PHILONTHINA Kirby, 1837 CREOPHILUS Leach, 1819 BISNIUS Stephens, 1829 DINOTHENARUS Thomson, C.G., 1858 CAFIUS Stephens, 1829 EMUS Leach, 1819 ERICHSONIUS Fauvel, 1874 OCYPUS Leach, 1819 GABRIUS Stephens, 1829 ONTHOLESTES Ganglbauer, 1895 GABRONTHUS Tottenham, 1955 PLATYDRACUS Thomson, C.G., 1858 NEOBISNIUS Ganglbauer, 1895 STAPHYLINUS Linnaeus, 1758 PHILONTHUS Stephens, 1829 TASGIUS Stephens, 1829 451 RABIGUS Mulsant & Rey, 1876 REMUS Holme, 1837 Tribe XANTHOLININI Erichson, 1839 GAUROPTERUS Thomson, C.G., 1860 Subtribe QUEDIINA Kraatz, 1857 GYROHYPNUS Leach, 1819 ACYLOPHORUS Nordmann, 1837 HYPNOGYRA Casey, 1906 ASTRAPAEUS Gravenhorst, 1802 LEPTACINUS Erichson, 1839 EURYPORUS Erichson, 1839 MEGALINUS Mulsant & Rey, 1877 HETEROTHOPS Stephens, 1829 NUDOBIUS Thomson, C.G., 1860 QUEDIUS Stephens, 1829 PHACOPHALLUS Coiffait, 1956 VELLEIUS Leach, 1819 XANTHOLINUS Dejean, 1821 Tribe OTHIINI Thomson, C.G., 1859 ATRECUS
    [Show full text]
  • Journal of Cave and Karst Studies
    June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]
  • Arthropod Community Response to Nitrogen Deposition Eliza Hernández Research Mentor: Erin Questad, Ph.D
    Arthropod community response to nitrogen deposition Eliza Hernández Research Mentor: Erin Questad, Ph.D. California State Polytechnic University, Pomona Abstract Insects play key ecological roles by providing services such as pollination and decomposition. Anthropogenic activity threatens the conservation of beneficial insects and is partly responsible for the observed decline in insect diversity. Nitrogen deposition, a human- accelerated process, poses a threat to insect diversity and thus, their valuable services. Increased N levels have been found to increase insect abundances yet decrease their species richness. The primary focus of this project was to determine the effects of N on the taxonomic richness, diversity, and evenness of insects and other arthropods in a managed grassland experiment at the South Coast Research & Extension Center in Irvine, California. I sampled from ten experimental grassland plots, five of which were treated with elevated levels of N and the other five were exposed to ambient levels of N. The plots contained grasses typical of Southern California grasslands, such as the California native grass, Stipa pulchra, and the invasive grass, Bromus hordeaceus. To sample soil and litter-dwelling arthropods throughout the growing season, each plot contained two pitfall traps. Arthropods were identified to the family taxonomic level. I expected to find greater arthropod richness, diversity, and evenness in the plots with ambient N compared to elevated N. However, this project indicates that fertilized plots host a greater richness of soil and litter-dwelling arthropod groups. Introduction Anthropogenic N deposition has more than doubled inputs of N to terrestrial ecosystems worldwide via the transformation of unreactive atmospheric N into biologically available forms on land (Vitousek et al., 1997).
    [Show full text]
  • Rove Beetles of Florida, Staphylinidae (Insecta: Coleoptera: Staphylinidae)1 J
    EENY115 Rove Beetles of Florida, Staphylinidae (Insecta: Coleoptera: Staphylinidae)1 J. Howard Frank and Michael C. Thomas2 Introduction body form is much broader and the elytra almost cover (Scaphidiinae) or do cover (Scydmaenidae) the abdomen. Rove beetles are often abundant in habitats with large In most, the antennae are simple and typically have 11 numbers of fly larvae—especially decaying fruit, decaying antennomeres (“segments”), but in some (Pselaphinae) the seaweed, compost, carrion, and dung—where some are antennae are clubbed or (Micropeplinae) have a greatly important predators of maggots and others prey on mites or enlarged apical segment, or (some Aleocharinae) have 10 nematodes. Because they are abundant in decaying plants or (some Pselaphinae) even fewer antennomeres. Antennae and fruits, plant inspectors encounter them but often do are geniculate (“elbowed”) in a few members of Pselaphinae, not recognize them as beetles. This article is intended as Osoriinae, Oxytelinae, Paederinae, and Staphylininae. an introduction to the Florida representatives of this large, diverse, and important family of beetles. Characterization Adults range from less than 1 mm to 40 mm long (none here is to the level of subfamily (at least 18 subfamilies is more than about 20 mm in Florida), although almost occur in Florida) because characterization to the level all are less than about 7 mm long. Adults of some other of genus (or species) would be too complicated for a families also have short elytra, but in these (e.g., various publication of this kind. The best popular North American Histeridae; Limulodes and other Ptiliidae; Nicrophorus, identification guide to beetles (White 1983), likewise family Silphidae; Trypherus, family Cantharidae; Conotelus, characterizes Staphylinidae only to the level of subfamily family Nitidulidae; Rhipidius, family Rhipiphoridae; Meloe, (and its classification is outdated, and it does not provide family Meloidae; and Inopeplus, family Salpingidae) the references to the literature).
    [Show full text]
  • Necrophilous Staphylininae (Coleoptera: Staphylinidae) As Indicators Of
    Forensic Science International 242 (2014) 32–37 Contents lists available at ScienceDirect Forensic Science International journal homepage: www.elsevier.com/locate/forsciint Technical note Necrophilous Staphylininae (Coleoptera: Staphylinidae) as indicators of season of death and corpse relocation a,b, a b Anna Ma˛dra *, Szymon Konwerski , Szymon Matuszewski a Natural History Collections, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland b Laboratory of Criminalistics, Adam Mickiewicz University, Sw. Marcin 90, 61-809 Poznan, Poland A R T I C L E I N F O A B S T R A C T Article history: Several case studies confirm that habitat and seasonal preferences of necrophilous insects are the source Received 4 December 2013 of valuable information about the season of death or corpse relocation. Rove beetles (Staphylinidae) are Received in revised form 6 June 2014 common predators found on corpses and subfamily Staphylininae includes species of the largest forensic Accepted 13 June 2014 importance. In order to evaluate usefulness of Staphylininae as indicators of season of death or corpse Available online 24 June 2014 relocation, a pig carrion experiment was made from April to October in open and forest habitats of Central Europe. Forty species of Staphylininae were collected, with hairy rove beetle (Creophilus maxillosus) being Keywords: the most abundant. Some species exhibited a clear preference towards particular habitats. It was found Forensic science that Philonthus lepidus was exclusive to open habitats and therefore may be useful as indicator of corpse Forensic entomology relocation from open to forest habitats. Philonthus decorus was the only species found exclusively on Rove beetles Habitat preferences carcasses in forests.
    [Show full text]