Alnus Glutinosa Global Invasive Species Database (GISD)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Vascular Plants of Massachusetts
The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory, -
Alnus Glutinosa Common Name
Plant Profiles: HORT 2242 Landscape Plants II Botanical Name: Alnus glutinosa Common Name: European alder, common alder, black alder Family Name: Betulaceae - birch family General Description: Alnus glutinosa is an intermediate size tree that can be grown single stem or clump. It has been a popular plant in the landscape due to its size, shape, winter texture and ability to grow in diverse landscape settings. European black alder is especially useful for wet sites and poor infertile sites as it has the ability to fix nitrogen in nodules on its root system. However, it is a non-native tree that has escaped cultivation and can now be found along rivers and other natural habitats in the Chicago area. According to The Morton Arboretum, this plant is invasive and should not be planted. Zone: 3-7 Resources Consulted: "Black alder." Trees & Plants. Morton Arboretum, 2013. Web. 26 Feb. 2014. Dirr, Michael A. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses. Champaign: Stipes, 2009. Print. "The PLANTS Database." USDA, NRCS. National Plant Data Team, Greensboro, NC 27401-4901 USA, 2014. Web. 17 Mar. 2014. Swink, Floyd, and Gerould Wilhelm. Plants of the Chicago Region. Indianapolis: Indiana Academy of Science, 1994. Print. Creator: Julia Fitzpatrick-Cooper, Professor, College of DuPage Creation Date: 2014 Keywords/Tags: Alnus glutinosa, European alder, black alder, deciduous, tree Whole plant/Habit: Description: Alnus glutinosa is a pyramidal tree. When grown single stem it has an almost formal pyramidal shape. However, it is frequently multi- stemmed (clump-form) with a less formal, weak, narrow, pyramidal shape. -
Alnus P. Mill
A Betulaceae—Birch family Alnus P. Mill. alder Constance A. Harrington, Leslie Chandler Brodie, Dean S. DeBell, and C. S. Schopmeyer Dr. Harrington and Ms. Brodie are foresters on the silviculture research team at the USDA Forest Service’s Pacific Northwest Research Station, Olympia,Washington; Dr. DeBell retired from the USDA Forest Service’s Pacific Northwest Research Station; Dr. Schopmeyer (deceased) was the technical coordinator of the previous manual Growth habit and occurrence. Alder—the genus (Tarrant and Trappe 1971). Alders also have been planted for Alnus—includes about 30 species of deciduous trees and wildlife food and cover (Liscinsky 1965) and for ornamental shrubs occurring in North America, Europe, and Asia and in use. European and red alders have been considered for use the Andes Mountains of Peru and Bolivia. Most alders are in biomass plantings for energy (Gillespie and Pope 1994) tolerant of moist sites and thus are commonly found along and are considered excellent firewood. In recent years, har streams, rivers, and lakes and on poorly drained soils; in vest and utilization of red alder has expanded greatly on the addition, some species occur on steep slopes and at high ele Pacific Coast of North America, where the species is used vations. The principal species found in North America are for paper products, pallets, plywood, paneling, furniture, listed in table 1. Many changes in the taxonomy of alder veneer, and cabinetry (Harrington 1984; Plank and Willits have been made over the years; in this summary, species are 1994). Red alder is also used as a fuel for smoking or curing referred to by their currently accepted names although in salmon and other seafood and its bark is used to make a red many cases the information was published originally under or orange dye (Pojar and MacKinnon 1994). -
Juglans Spp., Juglone and Allelopathy
AllelopathyJournatT(l) l-55 (2000) O Inrernationa,^,,r,':'r::;:';::::,:rt;SS Juglansspp., juglone and allelopathy R.J.WILLIS Schoolof Botany.L.iniversity of Melbourre,Parkville, Victoria 3052, ALrstr.alia (Receivedin revisedform : February 26.1999) CONTENTS 1. Introduction 2. HistoricalBackground 3. The Effectsof walnutson otherplants 3.i. Juglansnigra 3.1.1.Effects on cropplants 3. I .2. Eft'ectson co-plantedtrees 3. 1 .3 . Effectson naturalvegetation 3.2. Juglansregia 3.2.1. Effectson otherplalrts 3.2.2.Effects on phytoplankton 1.3. Othel walnuts : Juglans'cinerea, J. ntttlor.J. mandshw-icu 4. Juglone 5. Variability in the effect of walnut 5.1. Intraspecificand Interspecific variation 5.2. Seasonalvariation 5.3 Variation in the effect of Juglansnigra on other.plants 5.4. Soil effects 6. Discussion Ke1'rvords: Allelopathy,crops, history, Juglan.s spp., juglone. phytoplankton,walnut, soil, TTCCS 1. INTRODUCTION The"rvalnuts" are referable to Juglans,a genusof 20-25species with a naturaldistribution acrossthe Northern Hemisphere and extending into SouthAmerica. Juglans is a memberof thefamily Juglandaceae which contains6 or 7 additionalgenera including Cruv,a, Cryptocctrva and a total of about 60 species. Walnuts are corrunerciallyimportant as the sourceof the ediblewalnut, the highly prizedtimber and as a specimentrees. Eating walnutsare usually obtarnedfrom -/. regia (the colrunonor Persianwalnut, erroneousll'known as the English walnut)- a nativeof SEEurope and Asia, which haslong been cultivated, but arealso sometin.res availablelocally from other speciessuch as J. nigra (back walnut) - a native of eastern North America andJ. ntajor, J. calfornica andJ. hindsii, native to the u,esternu.S. ILillis Grafting of supcrior fnrit-bearing scions of J. regia onlo rootstocksof hlrdier spccics. -
Thèse Docteur En Pharmacie
UNIVERSITE DE PICARDIE JULES VERNE UFR DE PHARMACIE THÈSE pour le diplôme d’état de DOCTEUR EN PHARMACIE Soutenue publiquement le 30 septembre 2016 par Pauline CHALET Le bouleau : une espèce au pollen présentant un risque d’allergie respiratoire très élevé, mais aussi une espèce aux multiples usages pour l’Homme. Thèse dirigée par Madame Déborah CLOSSET-KOPP JURY : Président : Monsieur Guillaume DECOCQ Membres : Madame Elisabeth POPIN Madame Déborah CLOSSET-KOPP Monsieur Sébastien FOURNIER Thèse n° : Remerciements Je remercie tout d’abord Déborah Closset-Kopp qui n’a pas hésité une seule seconde à m’accompagner sur le chemin de la thèse. Sa confiance et sa présence tout au long des recherches et de l’écriture de ce mémoire furent un moteur pour moi. Je remercie Mr Decocq d’avoir accepté de présider la soutenance de ce mémoire. Je remercie les Docteurs Elisabeth Popin et Beatrice Jezraoui, allergologues du CHU d’Amiens qui ont accepté de correspondre par mail avec moi pour répondre à certaines questions. Je remercie également le Dr Popin de m’avoir permis d’assister à des Prick Test dans le service de Pneumologie où je faisais mon stage, et d’avoir accepté de devenir l’un des membres de mon jury. Je remercie mon patron Mr Sébastien Fournier, et les membres de la pharmacie de Cuise-la-Motte, encore actifs ou non, puisqu’ils seront toujours dans mon cœur. Travailler avec eux est un vrai bonheur, et après plusieurs heures passées sur ce mémoire, les rejoindre a toujours été une réelle bouffée d’oxygène. Merci à Mr Fournier de me faire confiance au sein de son officine depuis plusieurs années, et d’avoir accepté d’être l’un des membres de mon jury de thèse. -
Analyses of Hybrid Viability Across a Hybrid Zone Between Two Alnus Species Using Microsatellites and Cpdna Markers
G C A T T A C G G C A T genes Article Analyses of Hybrid Viability across a Hybrid Zone between Two Alnus Species Using Microsatellites and cpDNA Markers Jan Šmíd 1, Jan Douda 1, Karol Krak 1,2 and Bohumil Mandák 1,2,* 1 Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; [email protected] (J.Š.); [email protected] (J.D.); [email protected] (K.K.) 2 Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43 Pr ˚uhonice,Czech Republic * Correspondence: [email protected] Received: 18 June 2020; Accepted: 6 July 2020; Published: 9 July 2020 Abstract: Diploid Alnus glutinosa s. str. and autotetraploid A. rohlenae form a narrow hybrid zone in a study area in southern Serbia, which results in triploid hybrid formation. The vast majority of previous studies have been focused on studies of maternal plants, but the offspring resulting from their crossing have not been much studied. Here, we use the variability of microsatellites and chloroplast DNA between these species and their putative hybrids to create an overall picture of the development of the hybrid zone and its predicted type. To elucidate the gene transfer within both species, the origins of individual ploidies and especially the role of triploid hybrids, a germination experiment was carried out linked with a flow cytometry study of the resulting seedlings. The tension zone model seems to offer the most adequate explanation of our observations, with selection against triploid hybrids and the spatial positioning of the hybrid zone. -
Forestservice Research Note Ne-285
FORESTSERVICE RESEARCH NOTE NE-285 'OREST SE AGRICULTURE, 370 REED ROAD, BROOMALL, PA. 1'9008 RESULTS OF TREE AND SHRUB PLANTINGS ON LOW pH STRIP-MINE BANKS -WALTER H. DAVIDSON Research Forester Northeastern Forest Experiment Station, Princeton, 7W. Va. Abstract. Test plantings were established to evaluate the survival and growth of trees and shrubs on 10 acid strip mines in the bituminous region of Pennsylvania. Included in the test were five species of European alder, four birch species, black locust, syca- more, Scotch pine, autumn olive, sawtooth oak, bristly locust, and Japanese fleeceflower. After 11 years, data showed that two of the birches had highest rate of survival and best growth overall. On a few plots, European alder from a German seed source performed well. Scotch pine also performed well on a few plots. In general, survival and growth of all species was poor on spoils where the pH was less than 3.5. Revegetation of low pH strip-mine banks less than 4.0, is often cited as the reason why has been a problem since reclamation of strip revegetation has failed. Federal legislation has mines was first attempted. New legislation provided funds to reclaim orphan banks. Some has reduced this problem on current mining coal mining companies and private landown- operations. Pennsylvania strip-mine operators ers are attempting to reclaim orphan banks are now required to bury acid-producing over- without Federal assistance. However, recom- burden and spread topsoil on affected areas. mendations for tree and shrub species to plant Nevertheless, many acres of partially vege- on low pH spoil banks are limited. -
Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use. -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E. -
Alder Alnus Glutinosa Fearnóg Alder Is a Native Deciduous Tree Species Which Is Often Found Growing Along Banks of Streams and Rivers and in Low-Lying Swampy Land
Trees Alder Alnus glutinosa Fearnóg Alder is a native deciduous tree species which is often found growing along banks of streams and rivers and in low-lying swampy land. It is a water-loving tree reaching heights of 21m (70ft). During spring, four stages of production can be seen on an alder at any given time: the old cones of last years fruiting, the new leaf-buds or leaves and the male and female catkins of this year. Alder is our only broadleaved tree to produce cones. It matures at around 30 years of age and is then capable of a full crop of seeds. Alder leaves are held out horizontally. They are rounded and of an inverted heart-shape, with the broadest part furthest from the stem. When young they are somewhat sticky, as a gum is produced by the tree to ward off moisture. Alder catkins form in the autumn preceding their flowering. They remain dormant on the tree throughout winter and open in the spring before the leaves. The female catkins have threads hanging from them which catch the pollen from the developed male catkins, after which they grow larger and become dark reddish-brown as the seeds develop within. The ripe seeds fall in October and November. They have airtight cavities in their walls which allow them to float on water, along with a coating of oil to preserve them. Alder wood resists decay when in water and has traditionally been used to make boats, canal lockgates, bridges, platforms and jetties. Out of the water alder wood is soft and splits easily. -
Red Alder and the Pacific Northwest. Pages Ix-Xi in Hibbs, D.E., D.S
Tarrant, R.F., D.E. Hibbs, and D.S. DeBell. 1994. Red alder and the Pacific Northwest. Pages ix-xi in Hibbs, D.E., D.S. DeBell, and R.F. Tarrant, eds. The Biology and Management of Red Alder. Corvallis, OR: Oregon State University Press. 256 p. Red Alder and the Pacific Northwest ROBERT F. TARRANT, DAVID E. HIBBS, & DEAN S. DEBELL The alder, whose fat shadow nourisheth Each plant set neere him long flourisheth. William Browne, 1613 Brittania's Pastorals, Book I, Song 2 Alder (Alnus spp.) has long been observed to pos der in ecosystem function, including documenta sess unique biological properties. Virgil (70-19 tion that the actinomycete endophyte (Frankia B.C.), author of the Aeneid, reported his observa spp.) is responsible for nitrogen fixation in nodules tions on the ecology of alder, making particular on alder roots (Berry and Torrey 1979). reference to its occurrence in moist places (Kellogg Only a few years ago, red alder was regarded by 1882). In Forest Trees of Britain, Johns (1849) most Pacific Northwest forest managers as a weed wrote, "It has been observed that their [alders'] to be eradicated with herbicides. Today, red alder shade is much less injurious to vegetation than that provides the raw material for a thriving industry, of other trees," and quoted Browne's jingle, above. producing fine furniture, cabinetry, specialized ve The first "modern" scientist to report on neers and plywoods, shipping pallets, and paper nodulated alder roots was Meyen (1829). Following products. Present markets for these products are this clue, Hiltner (1896) performed a classic study limited primarily by the supply of alder logs. -
European Black Alder Specimens Can Be Found on the UMN St
MN NWAC Risk Common Name Latin Name (Full USDA Nomenclature) Assessment Worksheet (04-2017) European alder, black alder, or common Alnus glutinosa (L.) Gaertn. alder Original Reviewer: Affiliation/Organization: Original Review: David Hanson Minnesota Department of Transportation 08/22/2018 David Hanson Minnesota Department of Transportation 08/20/2019 Species Description: • Planted as a landscape tree or for site restorations. Indications from neighboring states and Hennepin County, MN suggest invasive potential into natural areas. • Member of the family Betulaceae (birches). Considered a pioneer species which indicates potential to colonize disturbed sites. • Form is typically narrow, upright, pyramidal. Potential for trees to reach 80 feet tall in native range, less in North America. • Foliage is alternate and simple. Leaf margin is described as doubly toothed and the tip of leaf blade is rounded or notched (indented) while the base is wedge shaped. Overall leaf shape is oval to orbicular with typical measurements of 2-4 inches long by 2-3 inches wide. Dark green above, lighter below. Individual leaves have 5-6 veins either side of mid-vein. • Flowers, while not colorful, do provide seasonal interest. Male flowers are a slender 1-1½ long catkin present through winter months. Female flowers are small, clustered near branch tips that develop into ¾ inch long woody cones. Female cones persist through winter shedding many winged nutlets • Twigs are green when young and developing a brownish color with stalked, purplish-brown, 3-angled buds. • Bark is initially smooth with prominent lenticels breaking into small blocks with maturity. (Seiler et al. 2018). Maps and additional identification images in Appendix.