The Natural Ecology of Saccharomyces Yeasts Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

The Natural Ecology of Saccharomyces Yeasts Dissertation The natural ecology of Saccharomyces yeasts Dissertation in fulfillment of the requirements for the degree "Dr. rer. nat." of the Faculty of Mathematics and Natural Sciences at the Christian Albrechts University of Kiel submitted by Vienna Kowallik Kiel, December 2015 First referee: Dr. Duncan Greig Second referee: Prof. Dr. Hinrich Schulenburg Date of the oral examination: 17.03.2016 Approved for publication: Yes Abstract ................................................................................................................................................................................... 1 Zusammenfassung ........................................................................................................................................................ 3 General Introduction .................................................................................................................................................. 5 1. General information about Saccharomyces yeasts ................................................................................... 5 1.1. What are yeasts? ........................................................................................................................... 5 1.2. Saccharomyces taxonomy ............................................................................................................. 6 1.3. Saccharomyces life cycle ................................................................................................................ 7 2. S. cerevisiae: humanity's pet yeast ..................................................................................................................... 8 3. S. cerevisiae: the laboratory model organism .............................................................................................. 9 3.1. The early days of yeast research .................................................................................................... 9 3.2. S. cerevisiae´s establishment as model organism ........................................................................ 10 4. The natural ecology of Saccharomyces yeast ............................................................................................. 11 4.1. The problematic lack of ecology knowledge – Why should we care? ......................................... 11 4.1.1. One caveat: the domestication problem of S. cerevisiae .................................................... 12 4.2. The natural environment of Saccharomyces yeast ...................................................................... 13 4.2.1. Saccharomyces: adapted to a fruit habitat? ....................................................................... 14 4.2.2. Saccharomyces: adapted to oak habitat? ........................................................................... 18 4.2.3. Saccharomyces adapted to both; fruit and oak habitat? .................................................... 19 4.2.4. Saccharomyces: not adapted to any specific habitat .......................................................... 20 Scope of this thesis ...................................................................................................................................................... 22 Chapter I The interaction with Saccharomyces paradoxus with its natural competitors on oak bark – published manuscript ............................................................... 22 Supporting Information Chapter I ............................................................................................................................. 39 Chapter II Analysis of the interactions between Saccharomyces paradoxus and two oak bark bacteria (follow up study to Chapter I) ............................................................................................................................................................................ 44 1. Introduction ................................................................................................................................................................. 44 1.1. Background .................................................................................................................................. 44 1.2. Microbial communities remain poorly understood. .................................................................... 45 1.3. The paradox of high biodiversity within microbial communities................................................. 45 1.4. The complexity of microbial communities and the interactions between members .................. 47 1.5. Determining the mechanisms of the interactions between S. paradoxus and two oak bark bacteria ..................................................................................................................................................... 48 2. Methods .......................................................................................................................................................................... 50 2.1. Estimating the effects of the microbial species on each other in competition ........................... 50 2.2. Characterizing the interaction between S. paradoxus and Pseudomonas .................................. 51 2.3. Competition of S. paradoxus with Mucilaginibacter using different initial frequencies…………………………………………………………………………………………………………………………….……………52 2.4. Characterizing the interaction between S. paradoxus and Mucilaginibacter on a temperature gradient ..................................................................................................................................................... 52 2.5. Conditioned media experiments ................................................................................................. 53 3. Results ............................................................................................................................................................................. 53 3.1. Pseudomonas dominates the interaction with S. paradoxus ...................................................... 53 3.2. S. paradoxus and Mucilaginibacter both benefit from the interaction ....................................... 54 3.3. Conditioned media has little effect on the growth of S. paradoxus ............................................ 57 4. Discussion ...................................................................................................................................................................... 58 4.1. S. paradoxus and Pseudomonas interaction is uni-directional with a resulting killing of the yeast..........................................................................................................................................................58 4.2. The interaction between S. paradoxus and Pseudomonas is not frequency-dependent nor strongly regulated by temperature ........................................................................................................... 58 4.3. The killing effect from Pseudomonas depends on the direct presence of the bacterium…. ....... 59 4.4. The interaction between S. paradoxus and Mucilaginibacter benefits the yeast´s growth……………...…………………………………………………………………………………………………………………………………60 4.5. The interaction of S. paradoxus and Mucilaginibacter is independent of the organism´s frequency but strongly influenced by temperature.................................................................................. 61 4.6. No big effects on S. paradoxus growth using conditioned medium ............................................ 61 4.7. A more natural medium allowed us the detection of more complex interactions ..................... 62 5. Conclusion ..................................................................................................................................................................... 63 6. Supplemental Material ........................................................................................................................................... 64 Chapter III Is the Crabtree effect an adaptation to high sugar environments? ............................................................................................................................................................... 65 1. Introduction ................................................................................................................................................................. 65 1.1. The aerobic and anaerobic metabolism of Saccharomyces spp. ................................................. 65 1.2. The Crabtree effect: an adaptation to high sugar environments? .............................................. 68 1.3. Competition studies in the scientific literature and their interpretation problem ..................... 70 1.4. Use of a Crabtree positive and negative strain in our study ........................................................ 71 1.5. Project aim ................................................................................................................................... 73 2. Methods .......................................................................................................................................................................... 73 2.1. Transformation of drug resistance genes into yeast strains ........................................................ 73 2.2. Experimental design .................................................................................................................... 74 2.3. Testing the effects of different media on
Recommended publications
  • Fungal Evolutionary Genomics Provides Insight Into The
    Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes Pierre Gladieux, Jeanne Ropars, Helene Badouin, Antoine Branca, Gabriela Aguileta, Damien de Vienne, Ricardo C. Rodriguez de la Vega, Sara Branco, Tatiana Giraud To cite this version: Pierre Gladieux, Jeanne Ropars, Helene Badouin, Antoine Branca, Gabriela Aguileta, et al.. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Molecular Ecology, Wiley, 2014, 23 (4), pp.753-773. 10.1111/mec.12631. hal-01302695 HAL Id: hal-01302695 https://hal.archives-ouvertes.fr/hal-01302695 Submitted on 14 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Molecular Ecology (2014) 23, 753–773 doi: 10.1111/mec.12631 INVITED REVIEWS AND SYNTHESES Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes PIERRE GLADIEUX,*†‡ JEANNE ROPARS,*† HELENE BADOUIN,*† ANTOINE BRANCA,*† GABRIELA AGUILETA,§¶ DAMIEN M. DE VIENNE,§¶** RICARDO C. RODRIGUEZ DE LA VEGA,*† SARA BRANCO‡
    [Show full text]
  • Variable Absorption of Mutational Trends by Prion-Forming Domains During Saccharomycetes Evolution
    Variable absorption of mutational trends by prion-forming domains during Saccharomycetes evolution Paul M. Harrison Department of Biology, McGill University, Monteal, Quebec, Canada ABSTRACT Prions are self-propagating alternative states of protein domains. They are linked to both diseases and functional protein roles in eukaryotes. Prion-forming domains in Saccharomyces cerevisiae are typically domains with high intrinsic protein disorder (i.e., that remain unfolded in the cell during at least some part of their functioning), that are converted to self-replicating amyloid forms. S. cerevisiae is a member of the fungal class Saccharomycetes, during the evolution of which a large population of prion-like domains has appeared. It is still unclear what principles might govern the molecular evolution of prion-forming domains, and intrinsically disordered domains generally. Here, it is discovered that in a set of such prion-forming domains some evolve in the fungal class Saccharomycetes in such a way as to absorb general mutation biases across millions of years, whereas others do not, indicating a spectrum of selection pressures on composition and sequence. Thus, if the bias-absorbing prion formers are conserving a prion-forming capability, then this capability is not interfered with by the absorption of bias changes over the duration of evolutionary epochs. Evidence is discovered for selective constraint against the occurrence of lysine residues (which likely disrupt prion formation) in S. cerevisiae prion-forming domains as they evolve across Saccharomycetes. These results provide a case study of the absorption of mutational trends by compositionally biased domains, and suggest methodology for assessing selection pressures on the composition of intrinsically disordered regions.
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Molecular Evolution in Yeast: Role of Chromosomal Inversions and Translocations in Speciation, Adaptation and Gene Expression
    Molecular evolution in yeast: Role of chromosomal inversions and translocations in speciation, adaptation and gene expression A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy (PhD) in the Faculty of Life Sciences 2011 Samina Naseeb Table of Contents List of tables 7 List of figures 9 Abstract 12 Declaration 13 Copyright statement 14 Acknowledgements 15 Dedication 16 Rational for submitting the thesis in alternative format 17 Chapter 1- Introduction 18 1.1 Saccharomyces cerevisiae as a model organism 19 1.1.1 DNA transformation and recombination in yeast 19 1.1.2 Life cycle 20 1.1.3 Genome of Saccharomyces cerevisiae 23 1.2 The taxonomy of yeast 25 1.3 Yeast genome evolution 28 1.4 Transposable elements (TE) and chromosomal rearrangements 30 1.5 Role of chromosomal inversions and translocations in gene order 34 evolution, speciation and fitness 1.6 Co-expressed gene clusters 35 1.6.1 Structure of the DAL cluster 36 1.6.2 Function of DAL cluster in allantoin degradation 37 1.7 Aim of the project 40 1.8 References 41 Chapter 2- Impact of chromosomal inversions in co-expressed gene clusters 49 2.1 Foreword 50 2 2.2 Abstract 50 2.3 Background 51 2.4 Results 55 2.4.1 Transcription factor analysis of DAL cluster structure 55 2.4.2 Fitness assays of the wild type strains 59 2.4.3 Construction of the strains with different gene 62 inversions 2.4.4 Plasmid extraction and digestion 62 2.4.5 Amplification of cassettes 63 2.4.6 Construction of the DAL2 inverted strain 64 2.4.6.1 Insertion of the lox P containing cassettes 64 2.4.6.2 Verification of cassette insertion 65 2.4.6.3 Cre transformation and induction 67 2.4.7 Construction of the strain with S.
    [Show full text]
  • WINE YEAST: the CHALLENGE of LOW TEMPERATURE Zoel Salvadó Belart Dipòsit Legal: T.1304-2013
    WINE YEAST: THE CHALLENGE OF LOW TEMPERATURE Zoel Salvadó Belart Dipòsit Legal: T.1304-2013 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral.
    [Show full text]
  • Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant
    J. Microbiol. Biotechnol. (2014), 24(9), 1149–1161 http://dx.doi.org/10.4014/jmb.1402.02035 Research Article Review jmb Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro Zhi-Fang Li†, Ling-Fei Wang†, Zi-Li Feng, Li-Hong Zhao, Yong-Qiang Shi, and He-Qin Zhu* State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, P. R. China Received: February 18, 2014 Revised: May 16, 2014 Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In Accepted: May 16, 2014 total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. First published online However, no significant difference in the abundance of isolated endophytes was found among May 19, 2014 resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), *Corresponding author followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and Phone: +86-372-2562280; susceptible ones had similar endophytic fungal population compositions. In three Fax: +86-372-2562280; Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were E-mail: [email protected] most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration † These authors contributed of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem equally to this work.
    [Show full text]
  • Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina)
    | YEASTBOOK GENOME ORGANIZATION AND INTEGRITY Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina) Bernard A. Dujon*,†,1 and Edward J. Louis‡,§ *Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France, †University Pierre and Marie Curie UFR927, 75005 Paris, France, ‡Centre for Genetic Architecture of Complex Traits, and xDepartment of Genetics, University of Leicester, LE1 7RH, United Kingdom ORCID ID: 0000-0003-1157-3608 (E.J.L.) ABSTRACT Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs.
    [Show full text]
  • Saccharomyces Eubayanus, the Missing Link to Lager Beer Yeasts
    MICROBE PROFILE Sampaio, Microbiology 2018;164:1069–1071 DOI 10.1099/mic.0.000677 Microbe Profile: Saccharomyces eubayanus, the missing link to lager beer yeasts Jose Paulo Sampaio* Graphical abstract Ecology and phylogeny of Saccharomyces eubayanus. (a) The ecological niche of S. eubayanus in the Southern Hemisphere – Nothofagus spp. (southern beech) and sugar-rich fructifications (stromata) of its fungal biotrophic parasite Cyttaria spp., that can attain the size of golf balls. (b) Schematic representation of the phylogenetic position of S. eubayanus within the genus Saccharomyces based on whole-genome sequences. Occurrence in natural environments (wild) or participation in different human-driven fermentations is highlighted, together with the thermotolerant or cold-tolerant nature of each species and the origins of S. pastorianus, the lager beer hybrid. Abstract Saccharomyces eubayanus was described less than 10 years ago and its discovery settled the long-lasting debate on the origins of the cold-tolerant yeast responsible for lager beer fermentation. The largest share of the genetic diversity of S. eubayanus is located in South America, and strains of this species have not yet been found in Europe. One or more hybridization events between S. eubayanus and S. cerevisiae ale beer strains gave rise to S. pastorianus, the allopolyploid yeasts responsible for lager beer production worldwide. The identification of the missing progenitor of lager yeast opened new avenues for brewing yeast research. It allowed not only the selective breeding of new lager strains, but revealed also a wild yeast with interesting brewing abilities so that a beer solely fermented by S. eubayanus is currently on the market.
    [Show full text]
  • Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations
    Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations Sofia Dashko1, 2, Ping Liu3, Helena Volk2, Lorena Butinar2, Jure Piškur1, 2, Justin C. Fay3* 1Biology, Lund University, Sweden, 2Wine Research Center, University of Nova Gorica, Slovenia, 3Genetics, Washington University, USA Submitted to Journal: Frontiers in Microbiology Specialty Section: Food Microbiology ISSN: 1664-302X Article type: Original Research Article Received on: 10 Dec 2015 Accepted on: 09 Feb 2016 Provisional PDF published on: 09 Feb 2016 Frontiers website link: www.frontiersin.org ProvisionalCitation: Dashko S, Liu P, Volk H, Butinar L, Piškur J and Fay JC(2016) Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations. Front. Microbiol. 7:215. doi:10.3389/fmicb.2016.00215 Copyright statement: © 2016 Dashko, Liu, Volk, Butinar, Piškur and Fay. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. This Provisional PDF corresponds to the article as it appeared upon acceptance, after peer-review. Fully formatted PDF and full text (HTML) versions will be made available soon. Frontiers in Microbiology | www.frontiersin.org Provisional Changes in the relative abundance of two Saccharomyces species from oak forests to wine fermentations Sofia Dashko1,2, Ping Liu3, Helena Volk1, Lorena Butinar1, Jure Piškur1,2 and Justin C.
    [Show full text]
  • Saccharomyces Paradoxus Transcriptional Alterations in Cells of Distinct Phenotype and Viral Dsrna Content
    microorganisms Article Saccharomyces paradoxus Transcriptional Alterations in Cells of Distinct Phenotype and Viral dsRNA Content Bazile˙ Ravoityte˙ 1,*, Juliana Lukša 1, Vyacheslav Yurchenko 2,3 , Saulius Serva 4,5 and Elena Serviene˙ 1,5,* 1 Laboratory of Genetics, Institute of Botany, Nature Research Centre, Akademijos str. 2, 08412 Vilnius, Lithuania; [email protected] 2 Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic; [email protected] 3 Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Malaya Pirogovskaya str. 20, 119435 Moscow, Russia 4 Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, Sauletekio˙ al. 7, 10257 Vilnius, Lithuania; [email protected] 5 Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio˙ al. 11, 10223 Vilnius, Lithuania * Correspondence: [email protected] (B.R.); [email protected] (E.S.) Received: 18 November 2020; Accepted: 29 November 2020; Published: 30 November 2020 Abstract: Killer yeasts are attractive antifungal agents with great potential applications in the food industry. Natural Saccharomyces paradoxus isolates provide new dsRNA-based killer systems available for investigation. The presence of viral dsRNA may alter transcriptional profile of S. paradoxus. To test this possibility, a high-throughput RNA sequencing was employed to compare the transcriptomes of S. paradoxus AML 15-66 K66 killer strains after curing them of either M-66 alone or both M-66 and L-A-66 dsRNA viruses. The S. paradoxus cells cured of viral dsRNA(s) showed respiration deficient or altered sporulation patterns. We have identified numerous changes in the transcription profile of genes including those linked to ribosomes and amino acid biosynthesis, as well as mitochondrial function.
    [Show full text]
  • Saccharomyces Cerevisiae Var. Diastaticus and Advanced Techniques for Its Detection Aimee L
    The Devil in the Details: Saccharomyces cerevisiae var. Diastaticus and Advanced Techniques for its Detection Aimee L. Garlit, PhD Dogfish Head Craft Brewery Monday June 5, 2017 Saccharomyces cerevisiae var. Diastaticus • First described by Andrews and Gilliland in 1952 • Originally named Saccharomyces diastaticus, later re-classified as a variant of S. cerevisiae • Named for diastatic properties (ability to cleave dextrin) • Also observed to produce phenolic aromas and flavors • Similar cell morphology to Gilliland, RB. Saccharomyces diastaticus Belgian strains – a starch-fermenting yeast. J. Inst. Brew. Vol. 72. 1966. A yeast by any other name… • Not always a contaminant • Can be used intentionally for a dry Belgian ale • Use caution when using attenuative Belgian strains Diastaticus contamination can wreak havoc • Ability to ferment dextrins leads to superattenuation • If attenuation does not finish in fermenter -> exploding packages • Contaminated beer will usually be out of spec for ABV (high), AE (low) and have phenolic aromas and flavors • Impossible to blend off out- of-spec beer unless pasteurizing An ever more common issue • Several product recalls and recoveries associated with this organism • Left Hand recall – nitro Milk Stout bottles • Bell’s Winter White – discussed at CBC 2017 • Dogfish encountered in late 2016. Suspicious colonies and puzzling sequencing data • Namaste White, a Belgian witbier • Observed growth on LCSM late in propagation • Sent for sequencing and received: Let’s keep an eye on it… • Canceled harvest
    [Show full text]
  • Interspecific Hybrids Reveal Increased Fermentation
    fermentation Article Saccharomyces arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile Matthew J. Winans 1,2,* , Yuki Yamamoto 1, Yuki Fujimaru 1, Yuki Kusaba 1, Jennifer E. G. Gallagher 2 and Hiroshi Kitagaki 1 1 Graduate School of Advanced Health Sciences, Saga University, 1, Honjo, Saga city, Saga 840-8502, Japan; [email protected] (Y.Y.); [email protected] (Y.F.); [email protected] (Y.K.); [email protected] (H.K.) 2 Biology Department, West Virginia University, 53 Campus Drive, Morgantown, WV 26506-6057, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(304)-483-1786; Fax: +1-(304)-293-6363 Received: 4 December 2019; Accepted: 17 January 2020; Published: 20 January 2020 Abstract: The use of interspecific hybrids during the industrial fermentation process has been well established, positioning the frontier of advancement in brewing to capitalize on the potential of Saccharomyces hybridization. Interspecific yeast hybrids used in modern monoculture inoculations benefit from a wide range of volatile metabolites that broaden the organoleptic complexity. This is the first report of sake brewing by Saccharomyces arboricola and its hybrids. S. arboricola x S. cerevisiae direct-mating generated cryotolerant interspecific hybrids which increased yields of ethanol and ethyl hexanoate compared to parental strains, important flavor attributes of fine Japanese ginjo sake rice wine. Hierarchical clustering heatmapping with principal component analysis for metabolic profiling was used in finding low levels of endogenous amino/organic acids clustered S. arboricola apart from the S.
    [Show full text]