Glycoside Hydrolases: Catalytic Base/Nucleophile Diversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Antifungal Chitosanase from Bacillus Subtilis SH21
molecules Article An Antifungal Chitosanase from Bacillus subtilis SH21 Yuanxiang Pang 1, Jianjun Yang 1, Xinyue Chen 1, Yu Jia 1, Tong Li 1, Junhua Jin 1, Hui Liu 1, Linshu Jiang 1, Yanling Hao 2, Hongxing Zhang 1,* and Yuanhong Xie 1,* 1 Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticides, Beijing Laboratory for Food Quality and Safety, Beijing Engineering Laboratory of Probiotics Key Technology Development, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China; [email protected] (Y.P.); [email protected] (J.Y.); [email protected] (X.C.); [email protected] (Y.J.); [email protected] (T.L.); [email protected] (J.J.); [email protected] (H.L.); [email protected] (L.J.) 2 Key Laboratory of Functional Dairy Science of Beijing and Chinese Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; [email protected] * Correspondence: [email protected] (H.Z.); [email protected] (Y.X.) Abstract: Bacillus subtilis SH21 was observed to produce an antifungal protein that inhibited the growth of F. solani. To purify this protein, ammonium sulfate precipitation, gel filtration chromatogra- phy, and ion-exchange chromatography were used. The purity of the purified product was 91.33% ac- cording to high-performance liquid chromatography results. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis revealed that the molecular weight of the protein is 30.72 kDa. The results of the LC–MS/MS analy- sis and a subsequent sequence-database search indicated that this protein was a chitosanase, and thus, we named it chitosanase SH21. -
United States Patent (19) 11, 3,708,396 Mitsuhashi Et Al
United States Patent (19) 11, 3,708,396 Mitsuhashi et al. (45) Jan. 2, 1973 54 PROCESS FOR PRODUCING 3,492,203 1/1970 Mitsuhashi............................. 195/31 MALTTOL 3,565,765 2/1971 Heady et al.................. .......... 195/31 75) Inventors: Masakazu Mitsuhashi, Okayama-shi, 3,535,123 10/1970 Heady.................................... 195/31 Okayama; Mamoru Hirao, Akaiwa 2,004,135 6/1935 Rothrock.......................... 260/635 C gun, Okayama; Kaname Sugimoto, OTHER PUBLICATIONS Okayama-shi, Okayama, all of Japan Abdullah et al., Mechanism of Carbohydrase Action, Vol.43, 1966. 73) : Assignee: Hayashibara Company, Okayama, Hou, E. F., Chem. Abs., Vol. 69, 1968, 53049d. Japan Kjolberg et al., Biochem. J. p. 258-262, Vol. 86, 1963. 22 Filed: Jan. 8, 1969 Lee et al., Arch Biochem. Biophys, Vol. 1 16, p. (21) Appl. No.:789,912 162-167, 1966. Payur, J. H., Starch, Chem. and Tech., Vol. 1, p. 166, 30 Foreign Application Priority Data 1965. Jan. 23, 1968 Japan.................................. 43/3862 Primary Examiner-A. Louis Monacell July 1, 1968 Japan................................. 43148921 Assistant Examiner-Gary M. Nath July 1 1, 1968 Japan................................. 43148922 Attorney-Browdy and Neimark 52 U.S. Cl.............. 195/31 R, 260/635 C, 99/141 R 5 Int. Cl................................................ C13d 1100 57 ABSTRACT 58) Field of Search............. 195/31; 99/141; 127/37; A process for producing maltitol from a starch slurry 260/635 C which comprises hydrolyzing the starch slurry with beta-amylase and alpha-1,6-glucosidase to produce a 56 References Cited high maltose containing product and catalytically hydrogenating the maltose with Raney nickel after ad UNITED STATES PATENTS justing the pH of the maltose product with calcium 2,868,847 111959 Boyers................................. -
Critical Evaluation of Gene Expression Changes in Human Tissues In
Review Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies Biljana Pokimica 1 and María-Teresa García-Conesa 2,* 1 Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia; [email protected] 2 Research Group on Quality, Safety and Bioactivity of Plant Foods, Campus de Espinardo, Centro de Edafologia y Biologia Aplicada del Segura-Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), P.O. Box 164, 30100 Murcia, Spain * Correspondence: [email protected]; Tel.: +34-968-396276 Received: 4 June 2018; Accepted: 19 June 2018; Published: 22 June 2018 Abstract: Pre-clinical cell and animal nutrigenomic studies have long suggested the modulation of the transcription of multiple gene targets in cells and tissues as a potential molecular mechanism of action underlying the beneficial effects attributed to plant-derived bioactive compounds. To try to demonstrate these molecular effects in humans, a considerable number of clinical trials have now explored the changes in the expression levels of selected genes in various human cell and tissue samples following intervention with different dietary sources of bioactive compounds. In this review, we have compiled a total of 75 human studies exploring gene expression changes using quantitative reverse transcription PCR (RT-qPCR). We have critically appraised the study design and methodology used as well as the gene expression results reported. We herein pinpoint some of the main drawbacks and gaps in the experimental strategies applied, as well as the high interindividual variability of the results and the limited evidence supporting some of the investigated genes as potential responsive targets. -
Updating the Sequence-Based Classification of Glycosyl Hydrolases
Article Updating the sequence-based classification of glycosyl hydrolases HENRISSAT, Bernard, BAIROCH, Amos Marc Reference HENRISSAT, Bernard, BAIROCH, Amos Marc. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 1996, vol. 316 ( Pt 2), p. 695-6 PMID : 8687420 DOI : 10.1042/bj3160695 Available at: http://archive-ouverte.unige.ch/unige:36909 Disclaimer: layout of this document may differ from the published version. 1 / 1 Biochem. J. (1996) 316, 695–696 (Printed in Great Britain) 695 BIOCHEMICAL JOURNAL Updating the sequence-based classification of available. When the number of glycosyl hydrolase sequences reached C 480, ten additional families (designated 36–45) could glycosyl hydrolases be defined and were added to the classification [2]. There are at present over 950 sequences of glycosyl hydrolases in the data- A classification of glycosyl hydrolases based on amino-acid- banks (EMBL}GenBank and SWISS-PROT). Their analysis sequence similarities was proposed in this Journal a few years shows that the vast majority of the C 470 additional sequences ago [1]. This classification originated from the analysis of C 300 that have become available since the last update could be classified sequences and their grouping into 35 families designated 1–35. in the existing families. However, several sequences not fitting Because such a classification is necessarily sensitive to the sample, the existing families allow the definition of new families (desig- it was anticipated that it was incomplete and that new families nated 46–57) (Table 1). When the several present genome would be determined when additional sequences would become sequencing projects have reached completion, the number of Table 1 New families in the classification of glycosyl hydrolases Family Enzyme Organism SWISS-PROT EMBL/GenBank 46 Chitosanase Bacillus circulans MH-K1 P33673 D10624 46 Chitosanase Streptomyces sp. -
Assessing Mimicry of the Transition State
View Article Online / Journal Homepage / Table of Contents for this issue PERSPECTIVE www.rsc.org/obc | Organic & Biomolecular Chemistry Glycosidase inhibition: assessing mimicry of the transition state Tracey M. Gloster*a,b and Gideon J. Davies*a Received 5th August 2009, Accepted 30th September 2009 First published as an Advance Article on the web 5th November 2009 DOI: 10.1039/b915870g Glycoside hydrolases, the enzymes responsible for hydrolysis of the glycosidic bond in di-, oligo- and polysaccharides, and glycoconjugates, are ubiquitous in Nature and fundamental to existence. The extreme stability of the glycosidic bond has meant these enzymes have evolved into highly proficient catalysts, with an estimated 1017 fold rate enhancement over the uncatalysed reaction. Such rate enhancements mean that enzymes bind the substrate at the transition state with extraordinary affinity; the dissociation constant for the transition state is predicted to be 10-22 M. Inhibition of glycoside hydrolases has widespread application in the treatment of viral infections, such as influenza and HIV, lysosomal storage disorders, cancer and diabetes. If inhibitors are designed to mimic the transition state, it should be possible to harness some of the transition state affinity, resulting in highly potent and specific drugs. Here we examine a number of glycosidase inhibitors which have been developed over the past half century, either by Nature or synthetically by man. A number of criteria have been proposed to ascertain which of these inhibitors are true transition state mimics, but these features have only be critically investigated in a very few cases. Introduction molecules, lipids or proteins), constitute between 1 and 3% of the genome of most organisms.1 The task facing these enzymes Glycosidases, the enzymes responsible for the breakdown of di-, with respect to maintaining efficient and highly specific catalysis oligo- and polysaccharides, and glyconjugates, are ubiquitous is no mean feat; it has been calculated that there are 1.05 ¥ 1012 through all kingdoms of life. -
Structure and Function of a Glycoside Hydrolase Family 8 Endoxylanase from Teredinibacter Turnerae
This is a repository copy of Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/137106/ Version: Published Version Article: Fowler, Claire A, Hemsworth, Glyn R orcid.org/0000-0002-8226-1380, Cuskin, Fiona et al. (5 more authors) (2018) Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae. Acta crystallographica. Section D, Structural biology. pp. 946-955. ISSN 2059-7983 https://doi.org/10.1107/S2059798318009737 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ research papers Structure and function of a glycoside hydrolase family 8 endoxylanase from Teredinibacter turnerae ISSN 2059-7983 Claire A. Fowler,a Glyn R. Hemsworth,b Fiona Cuskin,c Sam Hart,a Johan Turkenburg,a Harry J. Gilbert,d Paul H. Waltone and Gideon J. Daviesa* aYork Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, England, b Received 20 March 2018 School of Molecular and Cellular Biology, The Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, c Accepted 9 July 2018 England, School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, England, dInstitute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, England, and eDepartment of Chemistry, The University of York, York YO10 5DD, England. -
Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4) -
Oxidative Stress, a New Hallmark in the Pathophysiology of Lafora Progressive Myoclonus Epilepsy Carlos Romá-Mateo *, Carmen Ag
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 Oxidative stress, a new hallmark in the pathophysiology of Lafora progressive myoclonus epilepsy Carlos Romá-Mateo1,2*, Carmen Aguado3,4*, José Luis García-Giménez1,2,3*, Erwin 3,4 3,5 1,2,3# Knecht , Pascual Sanz , Federico V. Pallardó 1 FIHCUV-INCLIVA. Valencia. Spain 2 Dept. Physiology. School of Medicine and Dentistry. University of Valencia. Valencia. Spain 3 CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras. Valencia. Spain. 4 Centro de Investigación Príncipe Felipe. Valencia. Spain. 5 IBV-CSIC. Instituto de Biomedicina de Valencia. Consejo Superior de Investigaciones Científicas. Valencia. Spain. * These authors contributed equally to this work # Corresponding author: Dr. Federico V. Pallardó Dept. Physiology, School of Medicine and Dentistry, University of Valencia. E46010-Valencia, Spain. Fax. +34963864642 [email protected] 2 ABSTRACT Lafora Disease (LD, OMIM 254780, ORPHA501) is a devastating neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies and caused, in most cases, by mutations in either EPM2A or EPM2B genes, encoding respectively laforin, a phosphatase with dual specificity that is involved in the dephosphorylation of glycogen, and malin, an E3-ubiquitin ligase involved in the polyubiquitination of proteins related with glycogen metabolism. Thus, it has been reported that laforin and malin form a functional complex that acts as a key regulator of glycogen metabolism and that also plays a crucial role in protein homeostasis (proteostasis). In relationship with this last function, it has been shown that cells are more sensitive to ER-stress and show defects in proteasome and autophagy activities in the absence of a functional laforin-malin complex. -
Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose. -
The Metabolism of Tay-Sachs Ganglioside: Catabolic Studies with Lysosomal Enzymes from Normal and Tay-Sachs Brain Tissue
The Metabolism of Tay-Sachs Ganglioside: Catabolic Studies with Lysosomal Enzymes from Normal and Tay-Sachs Brain Tissue JOHN F. TALLMAN, WILLIAM G. JOHNSON, and ROSCOE 0. BRADY From the Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20014, and the Department of Biochemistry, Georgetown University School of Medicine, Washington, D. C. 20007 A B S T R A C T The catabolism of Tay-Sachs ganglioside, date fronm the 19th century and over 599 cases have been N-acetylgalactosaminyl- (N-acetylneuraminosyl) -galac- reported (1). Onset of the disease is in the first 6 months tosylglucosylceramide, has been studied in lysosomal of life and is characterized by apathy, hyperacusis, motor preparations from normal human brain and brain ob- weakness, and appearance of a macular cherry-red spot tained at biopsy from Tay-Sachs patients. Utilizing Tay- in the retina. Seizures and progressive mental deteriora- Sachs ganglioside labeled with '4C in the N-acetylgalac- tion follow with blindness, deafness, and spasticity, lead- tosaminyl portion or 3H in the N-acetylneuraminosyl ing to a state of decerebrate rigidity. These infants usu- portion, the catabolism of Tay-Sachs ganglioside may be ally die by 3 yr of age (2). initiated by either the removal of the molecule of A change in the chemical composition of the brain of N-acetylgalactosamine or N-acetylneuraminic acid. The such patients was first detected by Klenk who showed activity of the N-acetylgalactosamine-cleaving enzyme that there was an increase in the ganglioside content (hexosaminidase) is drastically diminished in such compared with normal human brain tissue (3). -
Mannoside Recognition and Degradation by Bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese
Mannoside recognition and degradation by bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese To cite this version: Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese. Mannoside recognition and degradation by bacteria. Biological Reviews, Wiley, 2016, 10.1111/brv.12316. hal- 01602393 HAL Id: hal-01602393 https://hal.archives-ouvertes.fr/hal-01602393 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2016), pp. 000–000. 1 doi: 10.1111/brv.12316 Mannoside recognition and degradation by bacteria Simon Ladeveze` 1, Elisabeth Laville1, Jordane Despres2, Pascale Mosoni2 and Gabrielle Potocki-Veron´ ese` 1∗ 1LISBP, Universit´e de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France 2INRA, UR454 Microbiologie, F-63122, Saint-Gen`es Champanelle, France ABSTRACT Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. -
J. Biol. Chem. Published Online December 22, 2019
This is a repository copy of Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/155946/ Version: Accepted Version Article: Armstrong, Zachary and Davies, Gideon J orcid.org/0000-0002-7343-776X (2020) Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. The Journal of biological chemistry. pp. 4316-4326. ISSN 1083-351X https://doi.org/10.1074/jbc.RA119.011591 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ JBC Papers in Press. Published on December 22, 2019 as Manuscript RA119.011591 The latest version is at http://www.jbc.org/cgi/doi/10.1074/jbc.RA119.011591 Structure and Function of Bs164 Structure and function of Bs164 β-mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164.