Patient Sperm Cryopreservation Program

Total Page:16

File Type:pdf, Size:1020Kb

Patient Sperm Cryopreservation Program Andrology Laboratory Center for Advanced Reproductive Care PATIENT SPERM CRYOPRESERVATION PROGRAM PATIENT SPERM BANK PROGRAM Semen Cryopreservation Conceiving with Cryopreserved Sperm Sperm cryopreservation allows patients to preserve or Intrauterine Insemination (IUI) Patients with normal, “bank” sperm prior to undergoing treatment for cancer, pre-cryopreservation, sperm parameters (20 million vasectomy, gender affirming treatments or face other motile sperm and >50% motility) may be able to procedures or situations that may lead to reduced conceive with intrauterine insemination. For intrauterine fertility or sterilization. insemination the cryopreserved sperm are thawed, washed, concentrated in a small volume and inserted Sperm Viability After Cryopreservation into the wife’s uterus on the day of expected ovulation. Approximately 50% of the motile sperm retain motility This procedure may be performed in a physician’s when thawed. Sperm count, percent motility, and office and is the least expensive medically assisted post-thaw viability will vary for each semen sample. reproduction technique and has a pregnancy rate of Poor quality specimens do not freeze as well as 15% per cycle. The optimal number of post-thaw motile normal semen samples. The number of motile sperm sperm for achieving a pregnancy with intrauterine pre-cryopreservation required for medically assisted insemination is 10 million/insemination. Patients may reproduction techniques ranges from less than wish to try this method first, while reserving enough 10,000 (in vitro fertilization with micromanipulation) frozen sperm for use in the in vitro fertilization program to 20 million (intrauterine insemination). We will if a pregnancy is not achieved through intrauterine thaw a small portion of the specimen shortly after insemination. Health insurance plans may cover some cryopreservation to determine the percentage of motile or none of these charges. sperm that are expected to survive cryopreservation. This information will be valuable to physicians should In Vitro Fertilization (IVF) Patients with less than you need a medically assisted reproduction procedure 20 million motile sperm cryopreserved are likely to in the future. require IVF and embryo transfer (IVF-ET). IVF facilitates the process of fertilization by inseminating eggs Morphological Evaluation of Sperm outside the body. Embryos resulting from this process Evaluation of sperm morphology is a method to are transferred to the uterus 5 days after the egg measure sperm quality. A small sample of the retrieval. Health insurance plans may cover some or specimen to be frozen is fixed onto a microscope none of these charges. slide and two hundred sperm are observed and rated according to a standard set of values for head For more information about the intrauterine shape, length, width and any other abnormalities that insemination or in vitro fertilization program please may be present. The ability of the sperm to fertilize visit our website: uihc.org/andrology-laboratory an egg in vitro is correlated with the percentage of morphologically normal sperm in the ejaculate. This or contact: information will be important for selecting a medically University of Iowa Health Care assisted reproduction technique for future pregnancy Center for Advanced Reproductive Care attempts. A morphology slide will be retained by 1360 N Dodge Street, Suite 2000 the Andrology Laboratory and will be evaluated upon Iowa City, IA 52245 physician request. 319-356-8483 for IVF or 319-356-1767 for IUI Directions from I-80 • Exit 246 • Turn South onto Dodge Street • Turn Right on N Dubuque Rd • Facility will be on the right. Andrology Laboratory Center for Advanced Reproductive Care PATIENT SPERM CRYOPRESERVATION PROGRAM SCHEDULING, PRE-BANKING REQUIREMENTS, SAMPLE COLLECTION, CRYOPRESERVATION, AND STORAGE PROCEDURES Scheduling cryopreservation and the specimen is transferred You may schedule an appointment at the UI Health Care to cryovials. The average ejaculate will fill 1-3 vials. Andrology Laboratory for sperm cryopreservation by The sperm are then frozen and stored in a liquid calling 319-467-5299. Appointment times are Monday- nitrogen tank at -196ºC. Sperm may be stored at this Friday, between 8 a.m.- 2 p.m. A physician requisition is temperature indefinitely. required for all testing. Storage Before you store a semen sample you need to be tested The UI Health Care Andrology Laboratory is a member for the following infectious diseases: of the ReproTech, Ltd. Fertility Preservation Network. • HIV I/II Antibody (or HIV Antigen/Antibody Combo) The network is based on ReproTech’s long history in • Hepatitis B Surface Antigen sperm banking and their leadership and expertise in long term storage. The cryopreserved sperm will be • Hepatitic C Antibody sent to ReproTech for long-term sperm storage. For If testing is done outside of University of Iowa Hospitals more information about ReproTech please visit their & Clinics, please have your referring physician’s office website: http://www.reprotech.com/ send us the test results. Results Two to seven days of abstinence from ejaculation is Results may be viewed by patients via MyChart within recommended prior to the day of specimen collection 24 hours of testing. A final copy of the results will to optimize the number of motile sperm in the ejaculate. be mailed within seven business days to ordering You should schedule your appointments accordingly. physicians outside UI Health Care. The Andrology Laboratory is located at Fees • UI Health Care North Dodge Semen Freeze $331.00 1360 North Dodge Street, Level 2 (Includes $174.00 charge for Seminal Fluid Analysis) Specimen Collection Sperm Morphology $169.00 (only if requested by physician) The specimen will be collected in a private room. In order to keep the specimen as sterile as possible, For scheduling or further information about the UI it must be collected into a sterile container by Health Care Andrology Laboratory, please contact us: masturbation. The laboratory will provide a sterile, non- University of Iowa Health Care North Dodge spermicidal lubricant if you require a lubricant. Attn: Andrology Laboratory You will be asked to sign consent forms to ship and 1360 N Dodge Street, Suite 2000 store your cryopreserved sperm at the ReproTech Iowa City, IA 52245-6104 storage facility. PHONE: 319-467-5299 Cryopreservation FAX: 319-384-8353 The semen analysis will be completed approximately one hour after the specimen arrives at the laboratory. We evaluate the ejaculate volume, seminal fluid consistency, sperm count, and sperm motility. Following the analysis, the semen is diluted with a cryoprotectant to protect the sperm during .
Recommended publications
  • Cryopreservation of Equine Semen with a Mechanical Control Rate Freezer
    CRYOPRESERVATION OF EQUINE SEMEN WITH A MECHANICAL CONTROL RATE FREEZER By Sossi Marianne Iacovides, B.S. A THESIS IN ANIMAL SCIENCE Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE ApProved Dr. Samuel Prien CHairPerson Dr. Samuel Jackson Dr. Leslie Thompson Dr. Mark Sheridan Dean of the Graduate School December, 2014 Copyright 2014, Sossi Marianne Iacovides, B.S. Texas TecH University, Sossi M. Iacovides, December 2014 ACKNOWLEDGMENTS ‘It’s hard to soar with eagles, if you won’t jump off the cliff.’ At the beginning of my graduate school process, I had the choice to start somewhere fresh and new. While it may have been the right move for some, it was not for me; I knew that I wasn’t finished with here. The Department of Animal & Food Sciences has become home, from the abundance of moral, ethical and personal support; it has been a blessing and privilege to spend the past 4 years here. Dr. Glenn Blodgett, you believed in my research, and that means the world to me. Without the access to the 6666 Ranch, and your indisPensible personnel, this project would have never gained flight. Mallory Canaday, the true “Swimmie Specialist,” you were an indispensable resource for me and I have learned more from you then I could have ever imagined. The lab personnel: my countless questions never went unanswered. I hope that you’ll walk the hallways and hear my snaughles forever more. The minions, my fellow graduate students, from the countless nights of studying, to the late night research – I could not have hoped for a better group to have survived these last two years with! Dr.
    [Show full text]
  • Genes in His Jeans] [Molly Kane] James Madison University Lexia Ÿ Volume V Ÿ 2
    Lexia: Undergraduate Journal in Writing, Rhetoric & Technical Communication Volume V 2016–2017 [Genes in his Jeans] [Molly Kane] James Madison University Lexia Volume V 2 If you asked women who were considering sperm donation what their ideal donor was like, you would probably receive answers like “smart,” “kind,” “tall,” and “healthy” (“What Women Want”). They would want their donor to be the perfect man, so that they would have the perfect child. Now imagine someone who you would see going to a clinic to donate their sperm. Is that man a fit and handsome stock broker, right off Wall Street, or is he a poor college student with bad acne looking to make some extra cash? To say the least, sperm donors span all walks of life. Women flip through hundreds of applications when trying to choose which donor will be the father of her child, and only general information is given to her about each donor. It is hard to imagine how one of the biggest decisions of her life will be based off which self-proclaimed personality traits she likes best. One of the greatest concerns when selecting a sperm sample is the state of health of the donor. Every mother wants a healthy baby, and in order for this to happen with donor-conceived children, both the mother and father need to be healthy individuals. You would assume that sperm banks only accept donors with a thorough health history and health risk evaluation, and you would probably also assume that they require tests for life-threatening diseases, such as cystic fibrosis.
    [Show full text]
  • Human Sperm Vitrification: the State of the Art Yong Tao*, Erika Sanger, Arpornrad Saewu and Marie-Claude Leveille
    Tao et al. Reproductive Biology and Endocrinology (2020) 18:17 https://doi.org/10.1186/s12958-020-00580-5 REVIEW Open Access Human sperm vitrification: the state of the art Yong Tao*, Erika Sanger, Arpornrad Saewu and Marie-Claude Leveille Abstract Sperm cryopreservation has been widely used in assisted reproductive technology (ART) and has resulted in millions of live births. Two principal approaches have been adopted: conventional (slow) freezing and vitrification. As a traditional technique, slow freezing has been successfully employed and widely used at ART clinics whereas the latter, a process to solidify liquid into an amorphous or glassy state, may become a faster alternative method of sperm cryopreservation with significant benefits in regard to simple equipment and applicability to fertility centers. Sperm vitrification has its own limitations. Firstly, small volume of load is usually plunged to liquid nitrogen to achieve high cooling rate, which makes large volume sample cryopreservation less feasible. Secondly, direct contact with liquid nitrogen increases the potential risk of contamination. Recently, new carriers have been developed to facilitate improved control over the volume and speed, and new strategies have been implemented to minimize the contamination risk. In summary, although sperm vitrification has not yet been applied in routine sperm cryopreservation, its potential as a standard procedure is growing. Keywords: Cryopreservation, Vitrification, Contamination, Liquid nitrogen, Spermatozoa, Semen Background births from frozen sperm after 4 decades storage in LN2 Over 8 decades ago, in 1938, Luyet and Hoddap per- had been reported [6]. Cryopreservation of spermatozoa formed the first vitrification of frog sperm in liquid air has been the most valuable and used way to preserve the [1].
    [Show full text]
  • A Study of Bioethical Qualifiers in the Donation of Human Sperm
    Intersect, Vol 14, No 2 (2021) Creating Boundaries in the Sperm Donation Industry: A Study of Bioethical Qualifiers in the Donation of Human Sperm Tanvee Sinha1 1 The University of Alabama at Birmingham While sperm donation has become a common and effective practice amongst many who suffer from the inability to conceive naturally, the practice's bioethical implications may reveal a necessity to place qualifying constrictions on the practice. Some examples of related ethical issues range from psychological impacts on offspring as a result of partial genetic dissociation from parents, and discriminatory practices, such as “shopping” for traits or narrow descriptions of optimal sperm donors. Regulations for eligible donors vary in different regions, while keeping some sort of uniformity through criteria, including height, weight, education, and lifestyle choices. This piece highlights some of the major cultural differences between China and the USA in regard to the regulation of sperm donation. Recently in China, after the “one- child only” policy was lifted, there is an increasing demand for sperm donors now than ever, but with new policies, it is even more difficult to donate and purchase sperm. Due to donors not being able to qualify for the “amount of patriotism” needed, there is an increased use of underground operations, such as the black market. These operations are often unsafe and have no regulation, encouraged by donors and middlemen solely seeking monetary value. Sinha, Boundaries in Sperm Donation Background In the twentieth century, there has been a rapid advancement in technology, causing numerous innovative ways for one to now have a child.
    [Show full text]
  • Male Infertility
    www.livestrong.org.livestrong.org Male Infertility Some male cancer survivors find that they are not able to have children due to the effects of cancer treatment. By identifying your risk for infertility, you can take steps before treatment to preserve your fertility. For survivors who have already completed treatment, there are other options for having children. Male Infertility: Detailed Information This infinformationormation is meant to be a general introduction to this topic. The purpose is to provide a starting point for you to become more informed about important matters that may be affecting your life as a survivor and to provide ideas about steps you can take to learn more. This information is not intended nor should it be interpreted as providing professional medical, legal and financial advice. You should consult a trained professional for more information. Please read the Suggestions (http://www.livestrong.org/Get-Help/Learn-About-Cancer/Cancer-Support-Topics/Physical-Effects-of- Cancer/Male-Infertility#a#a) and Additional Resources (http://www.livestrong.org/Get-Help/Learn- About-Cancer/Cancer-Support-Topics/Physical-Effects-of-Cancer/Male-Infertility#a#a) sections for questions to ask and for more resources. Cancer and treatment may put survivors at risk for infertility. Male infertility generally means an inability to produce healthy sperm or to ejaculate sperm. There are many different causes of infertility in cancer survivors including physical and emotional. Certain treatments can cause or contribute to this condition. It is best to discuss the risks of infertility with your doctor before cancer treatment begins. However, there are options for survivors who experience infertility as a result of cancer or treatment.
    [Show full text]
  • Member Guide
    MEMBER GUIDE Understanding Your Progyny Benefit 2019 PLAN YEAR YOUR GUIDE TO PROGYNY’S FERTILITY AND FAMILY BUILDING BENEFIT At Progyny, we know the road to parenthood can be challenging — we were founded by people who’ve faced obstacles to fertility first-hand. That’s why we partner with the nation’s leading fertility specialists to bring you a smarter approach with better care and more successful outcomes. Our benefit is designed so that more options are available to anyone who wants to have a child, no matter their path to parenthood. The Progyny benefit is designed to assist covered employees and their partners who want to have a child, including LGBTQ+ individuals and couples, and single parents by choice. Your benefit also provides coverage for fertility preservation (egg or sperm freezing), which allows you to build a family when you’re ready. We created this guide to provide you with all the information you’ll need to get the most out of your benefit. We understand the journey to become a parent can be physically, emotionally, and financially challenging. With this in mind, we’ve designed your benefit to include comprehensive treatment coverage, access to the highest level of care, and personalized emotional support. We’re here to ensure you have a healthy, timely, and supported family building journey. Personalized Guidance Unlimited guidance and dedicated support from Comprehensive Coverage a patient care advocate throughout your fertility Bundled fertility treatment coverage journey. for every unique path to parenthood. Premier Specialists Convenient access to the largest national network of fertility experts.
    [Show full text]
  • The Acrosomal Status of Density Purified Spermatozoa Differentiates
    Journal of Clinical Medicine Article The Acrosomal Status of Density Purified Spermatozoa Differentiates Men from Couples in IVF and ICSI Treatment and Is Associated with Fecundity 1,2, 3, 4 Pernille Badsberg Norup y, Dorte L. Egeberg Palme y, Morten R. Petersen , Katharina M. Main 1,2 and Kristian Almstrup 1,2,* 1 Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; [email protected] (P.B.N.); [email protected] (K.M.M.) 2 International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark 3 European Sperm Bank ApS, DK-2200 Copenhagen, Denmark; [email protected] 4 The Fertility Clinic, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; [email protected] * Correspondence: [email protected]; Tel.: +45-35-45-66-39 The authors consider that the first two authors should be regarded as joint First Authors. y Received: 26 June 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: The acrosome of the spermatozoa is required for fertilization and in the raw ejaculate the percentage of viable acrosome-intact spermatozoa, the acrosomal status, is higher among men with good semen quality. Here we investigated if the acrosomal status of the processed semen preparations used at a fertility clinic can also be informative and whether it is associated with fecundity. The acrosomal status was measured by image cytometry on purified semen samples from couples during in vitro fertilization (IVF) (n = 99) and intracytoplasmic sperm injection (ICSI) (n = 107) treatment.
    [Show full text]
  • Donor INSEMINATION Insemination
    CLiInSemBrochure_CryoGenicInSemBrochure 12/14/10 12:28 PM Page 1 DONOR Donor INSEMINATION Insemination Donor insemination (DI) is a simple procedure that uses a syringe to place sperm into a woman’s vagina or uterus to assist her in becoming pregnant. The sperm is obtained from someone other than a woman’s husband or partner. Sperm banks (also known as cryobanks) offer a selection of screened and tested sperm donors for those interested in using DI. Your physician will discuss which DI procedure is right for you. There are basically two types of insemination options: intrauterine or intracervical. • INTRAUTERINE INSEMINATION: Semen is inserted directly into the uterus, by way of the cervical opening, using a small catheter. The sperm specimen is labeled as IUI (intrauterine) and is pre-washed, meaning that seminal plasma is removed prior to freezing. • INTRACERVICAL INSEMINATION: Semen is placed into the cervical opening. Sperm is typically labeled as ICI (intracervical or standard) and is unwashed, i.e. the seminal plasma has not been removed. WHY CHOOSE DI? There are several advantages to using DI over other methods: • Donor selection can be made with the participation of your husband or partner. • The woman can experience pregnancy and all the excite - ment, anticipation and bonding derived from carrying and delivering her child. This brochure is the courtesy of • As a mother, you will know that your child is produced from your own eggs and your own genetic material. Donor Insemination (DI) is widely • By attending the inseminations, the husband or partner can practiced throughout the world with an share in the child’s conception.
    [Show full text]
  • Race and Assisted Reproduction: Implications for Population Health
    RACE AND ASSISTED REPRODUCTION: IMPLICATIONS FOR POPULATION HEALTH Aziza Ahmed* INTRODUCTION This Article emerges from Fordham Law Review’s Symposium on the fiftieth anniversary of Loving v. Virginia,1 the case that found antimiscegenation laws unconstitutional.2 Inspired by the need to interrogate the regulation of race in the context of family, this Article examines the diffuse regulatory environment around assisted reproductive technology (ART) that shapes procreative decisions and the inequalities that these decisions may engender.3 ART both centers biology and raises questions about how we imagine our racial futures in the context of family, community, and nation.4 Importantly, ART demonstrates how both the state and private * Professor of Law, Northeastern University School of Law. Many thanks to Kimani Paul- Emile, Robin Lenhardt, and Tanya Hernández for inviting me to participate in the Fordham Law Review Symposium entitled Fifty Years of Loving v. Virginia and the Continued Pursuit of Racial Equality held at Fordham University School of Law on November 2–3, 2017. My deep gratitude to Melissa Murray, Jason Jackson, and Libby Adler for their generous comments on an earlier draft of this Article and to Linda McClain and Ashley Shattles for several helpful discussions that helped shape this paper. For an overview of the Symposium, see R.A. Lenhardt, Tanya K. Hernández & Kimani Paul-Emile, Foreword: Fifty Years of Loving v. Virginia and the Continued Pursuit of Racial Equality, 86 FORDHAM L. REV. 2625 (2018). 1. 388 U.S. 1 (1967). 2. Id. at 11–12. 3. Another site of racial regulation in the context of family formation that is not discussed in this Article is adoption.
    [Show full text]
  • Artificial Insemination
    Ch36-A03309.qxd 1/23/07 5:16 PM Page 539 Section 6 Infertility and Recurrent Pregnancy Loss Chapter Artificial Insemination 36 Ashok Agarwal and Shyam S. R. Allamaneni INTRODUCTION widely available, the terms homologous artificial insemination and heterologous artificial insemination were used to differentiate Artificial insemination is an assisted conception method that can these two alternative sources. However, the use of these bio- be used to alleviate infertility in selected couples. The rationale medical terms in this manner is at variance with their scientific behind the use of artificial insemination is to increase the gamete meaning, where they denote different species or organisms (as in, density near the site of fertilization.1 The effectiveness of artificial e.g., homologous and heterologous tissue grafts). insemination has been clearly established in specific subsets of In the latter half of the 20th century, the terms artificial infertile patients such as those with idiopathic infertility, infertility insemination, donor (AID) and artificial insemination, husband related to a cervical factor, or a mild male factor infertility (AIH) found common use. However, the widespread use of the (Table 36-1).2,3 An accepted advantage of artificial insemination acronym AIDS for acquired immunodeficiency syndrome resulted is that it is generally less expensive and invasive than other in the replacement of AID with therapeutic donor insemination assisted reproductive technology (ART) procedures.4 (TDI). An analogous alternative term for AIH has not evolved, This chapter provides a comprehensive description of probably in part because of the increasingly common situation indications for artificial insemination, issues to consider before where the woman’s partner is not her legal husband.
    [Show full text]
  • 13D. OBGYN and Fertility Care for LGBTQIA+ Persons
    Reproductive Care and Obstetrics for LGBTQIA+ Individuals Rebekah P. Viloria MD, FACOG Fenway Health Obstetrics & Gynecology Advancing Excellence in Sexual and Gender Minority Health Conference March 22,2020 DIsclosures ▪ I have no financial disclosures Objective Incorporate reproductive counseling into routine care Understand the potential effects of Gender Affirming Hormone Therapy on fertility Counsel on reproductive choices for family building Clinical Case #1 ▪ 35 y.o. lesbian desiring pregnancy ▪ PMH: Anxiety, BMI 26 ▪ PGynH: No abnormal pap or STI; monogamous with cis female ▪ FH: No birth defects or intellectual disabilities ▪ SH: No alcohol, tobacco, drugs. No recent travel; employed; married Pregnancy ▪ Reciprocal IVF ▪ -partner’s egg + anonymous donor sperm ▪ Aneuploidy testing of embryo ▪ Pan ethnic testing for both patient and partner Antepartum ▪ Immunizations up to date ▪ EPDS=5 ▪ Low risk aneuploidy testing ▪ Normal fetal survey ▪ Normal testing for gestational diabetes ▪ Working with doula ▪ Attended childbirth classes ▪ Created birthing preference plan Delivery ▪ Gestational hypertension at 40 wks ▪ Intrapartum severe hypertension ▪ Cesarean delivery for 2nd stage arrest ▪ Female bodied baby, 8# 2 oz, Apgars 8,9 ▪ Clear drapes ▪ Partner, Skin to skin in OR ▪ Postpartum breastfeeding Family Equality Council (2019) LGBTQ Family Building Survey. https://www.f amilyequality.o rg/fbs Reproductive Wish ▪ Survey of 50 transmen after GRS ▪ 22% participants already had children ▪ 8 had partners conceived with donor sperm ▪ 3 conceived prior to GRS ▪ 54% were interested in having children at time of study ▪ 37.5% would have considered fertility preservation if available ▪ Wierckx K, Van Caenegem E, Pennings G, Elaut E, Dedecker D, Van de Peer F, et al. Reproductive wish in transsexual men.
    [Show full text]
  • Siblings Conceived by Donor Sperm Are Finding Each Other
    Siblings conceived by donor sperm are finding each other By Amy Harmon NEW YORK TIMES NEWS SERVICE Like most anonymous sperm donors, Donor 150 of the California Cryobank probably will never meet any offspring he has fathered through the sperm bank. There are at least four children, according to the bank's records, and perhaps many more, since the dozens of women who have bought Donor 150's sperm are not required to report when they have a baby. The half-siblings – twins Erin and Rebecca Baldwin, 17, (right); Justin Senk, 15, (center); and McKenzie Gibson, 12, and her 18-year-old brother,Tyler – found each other in a registry. Even the mothers know only the code number the bank uses for identification and the fragments of personal information provided in his donor profile that drew them to select Donor 150 over other candidates. But two of his genetic daughters, born to different mothers and living in different states, have been e-mailing and talking on the phone regularly since learning of each other's existence this summer. They plan to meet over Thanksgiving. Danielle Pagano, 16, and JoEllen Marsh, 15, connected through the Donor Sibling Registry, a Web site that is helping to open a new chapter in the oldest form of assisted reproductive technology. The three-year-old site allows parents and offspring to enter their contact information and search for others by sperm bank and donor number. Donors who want to shed their anonymity are especially welcome, but the vast majority of the site's 1,001 matches are between half-siblings.
    [Show full text]