Health and Safety Issues with Geological Specimens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)
minerals Article Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China) Ying Jiang 1, Guanghai Shi 1,* , Liguo Xu 2 and Xinling Li 3 1 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Geological Museum of China, Beijing 100034, China; [email protected] 3 Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang 830004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-8232-1836 Received: 6 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents. -
Yellowish Green Diopside and Tremolite from Merelani, Tanzania
YELLOWISH GREEN DIOPSIDE AND TREMOLITE FROM MERELANI, TANZANIA Eric A. Fritz, Brendan M. Laurs, Robert T. Downs, and Gelu Costin tion (typical of diopside, which is a pyroxene) shown by other crystals in the parcels. Four similar-appearing yellowish green samples Mr. Ulatowski loaned one example of both types of from Block D at Merelani, Tanzania, were identified crystals to GIA for examination (figure 1), and we also as diopside and tremolite. The gems are identical in color, but their standard gemological properties are typical for calcic pyroxene and amphibole. The identification of the diopside was made with Raman Figure 1. These yellowish green crystals were recov- spectroscopy, while single-crystal X-ray diffraction ered from Block D at Merelani in the latter part of and electron-microprobe analyses were used to 2005. A blocky morphology is shown by the diopside confirm the amphibole species as tremolite. crystal (1.6 cm tall; left and bottom), whereas the Absorption spectroscopy (in the visible–mid-infrared tremolite crystal has a flattened, diamond-shaped range) revealed that the two gem materials are col- cross-section. Photos by Robert Weldon. ored by V3+, Cr3+, or both. t the 2006 Tucson gem shows, Steve Ulatowski A showed one of the authors (BML) some yellowish green crystals that he purchased as diopside while on buy- ing trips to Tanzania in August and November 2005. The material was reportedly produced during this time period from Block D at Merelani, in the same area that yielded some large tsavorite gem rough (see Laurs, 2006). Mr. Ula- towski obtained 1,200 grams of the green crystals, mostly as broken pieces ranging from 0.1 to 50 g (typically 1–5 g). -
Riebeckite Na2[(Fe2+,Mg)3Fe 2 ]Si8o22(OH)
2+ 3+ Riebeckite Na2[(Fe ; Mg)3Fe2 ]Si8O22(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As prismatic crystals, to 20 cm. Commonly ¯brous, asbestiform; earthy, massive. Twinning: Simple or multiple twinning 100 . k f g Physical Properties: Cleavage: Perfect on 110 , intersecting at 56 and 124 ; partings f g ± ± on 100 , 010 . Fracture: [Conchoidal to uneven.] Tenacity: Brittle. Hardness = 6 f g f g D(meas.) = 3.28{3.44 D(calc.) = 3.380 Optical Properties: Semitransparent. Color: Black, dark blue; dark blue to yellow-green in thin section. Luster: Vitreous to silky. Optical Class: Biaxial (+) or ({). Pleochroism: X = blue, indigo; Y = yellowish green, yellow- brown; Z = dark blue. Orientation: Y = b; X c = 8 to 7 ; Z c = 6 {7 . Dispersion: ^ ¡ ± ¡ ± ^ ± ± Strong. ® = 1.656{1.697 ¯ = 1.670{1.708 ° = 1.665{1.740 2V(meas.) = 50±{90±. Cell Data: Space Group: C2=m: a = 9.822 b = 18.07 c = 5.334 ¯ = 103:52± Z = 2 X-ray Powder Pattern: Doubrutscha [Dobrudja], Romania. (ICDD 19-1061). 8.40 (100), 3.12 (55), 2.726 (40), 2.801 (18), 4.51 (16), 2.176 (16), 3.27 (14) Chemistry: (1) (2) (1) (2) SiO2 52.90 50.45 CaO 0.12 0.08 TiO2 0.57 0.14 Li2O 0.54 Al2O3 0.12 1.96 Na2O 6.85 6.80 Fe2O3 17.20 17.52 K2O 0.03 1.48 Cr2O3 0.04 F 2.58 + FeO 17.95 17.90 H2O 0.87 MnO 0.00 1.40 O = F 1.09 ¡ 2 MgO 2.96 0.05 Total 98.74 100.68 (1) Dales Gorge Iron Formation, Western Australia; by electron microprobe, corresponds to 2+ 3+ (Na2:00Ca0:02K0:01)§=2:03(Fe2:26Mg0:66Ti0:06)§=2:98Fe1:95(Si7:98Al0:02)§=8:00O22(OH)2: (2) Pikes 2+ Peak area, Colorado, USA; corresponds to (Na2:02K0:29Ca0:01)§=2:32(Fe2:30Li0:33Mn0:18Al0:10 3+ Ti0:02Mg0:01)§=2:94Fe2:02(Si7:75Al0:25)§=8:00O22[F1:25(OH)0:89]§=2:14: Polymorphism & Series: Forms a series with magnesioriebeckite. -
C:\Documents and Settings\Alan Smithee\My Documents\MOTM
Rdosdladq1//6Lhmdq`knesgdLnmsg9@bshmnkhsd This month’s featured mineral has many interesting and unusual varieties: While our specimens have well-developed prismatic crystals, which is unusual for actinolite, a fibrous variety is a former ore of asbestos, and a microcrystalline variety is one of the two types of the gemstone jade. Read on! OGXRHB@K OQNODQSHDR 2+ Chemistry: GCa2(Mg,Fe )5Si8O22(OH)2 Basic Calcium Magnesium Iron Silicate (Calcium Magnesium Iron Silicate Hydroxide) Class: Silicates Subclass: Inosilicates (Double-Chain Silicates) Group: Tremolite (Amphibole Group) Crystal System: Monoclinic Crystal Habits: Usually long prismatic with diamond-shaped cross section; also bladed, columnar, acicular, divergent, fibrous (asbestiform), and radiating. A compact, microcrystalline form is known as nephrite jade. Color: Bright-to-dark green, grayish-green, and greenish-black. Luster: Vitreous; silky and pearly on cleavage surfaces. Transparency: Transparent to translucent Streak: Colorless to white Cleavage: Perfect in two directions lengthwise with intersecting cleavage planes. Fracture: Splintery, uneven; fibrous forms are flexible. Hardness: 5.0-6.0, nephrite variety is 6.5. Specific Gravity: 3.0-3.5 Luminescence: None Refractive Index: 1.63-1.66 Distinctive Features and Tests: Best field marks are the prismatic, often-radiating crystal habit and narrow cleavage-intersection angle. Can be confused with wollastonite, which is fluorescent; the tourmaline-group minerals, which lack cleavage; and epidote, which has a broader cleavage angle. Laboratory methods are necessary to differentiate actinolite from tremolite and ferro- actinolite, as explained in the box on Page 3. Dana Classification Number: 66.1.3a.2 M @L D The name “actinolite,” pronounced ack-TIH-no-lite, derives from the Greek aktino, meaning “ray,” a reference to the common radiate habit of its prismatic crystals. -
X-Ray Structure Refinements of Tremolite at 140 and 295 K: Crystal Chemistry and Petrologic Implications
American Mineralogist, Volume 81, pages 1117-1125,1996 X-ray structure refinements of tremolite at 140 and 295 K: Crystal chemistry and petrologic implications HEXIONG YANG1.. ANDBERNARD W. EVANS2 'Department of Geological Sciences. Campus Box 250, University of Colorado, Boulder, Colorado 80309-0250, U.S.A. 2Department of Geological Sciences, Box 351310, University of Washington, Seattle, Washington 98195-1310, U.S.A. ABSTRACT A near-end-member natural tremolite, N!lo.o,Ca1.97M~.9sFeo.Q3Alo.oISis.oo022(OH)2'was studied by single-crystal X-ray diffraction at 140 and 295 K to seek a possible crystal- chemical explanation for the typically low CaI~ M ratios, relative to the ideal ratio of 2/5, observed in both natural and synthetic tremolite samples. Difference-Fourier maps re- vealed the presence of a residual electron density close to the M4 site along the diad axis toward the octahedral strip. Structure refinements indicated that the M4 and M4' sites are occupied by Ca + Na and M(Fe + Mg), respectively. In comparison with the configuration of the M2 coordination polyhedron in diopside, the degree of distortion and the volume of the M4 coordination polyhedron in tremolite are relatively large and the M4 cation is slightly underbonded. These two factors contribute to an energetic drive toward M-en- riched tremolite. The average unit-cell volume of 906.6(2) A3 determined at 295 K for nearly pure tremolite in this study suggests an end-member reference-state volume for tremolite of907 A3. This indicates that cell volumes of synthetic tremolite of 904.2(4) A3 reflect 8-10% cummingtonite solid solution, as previous authors have claimed. -
Tungsten Minerals and Deposits
DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance................................. -
The Effect of Grinding on Tremolite Asbestos and Anthophyllite Asbestos
minerals Article The Effect of Grinding on Tremolite Asbestos and Anthophyllite Asbestos Andrea Bloise 1,* ID , Robert Kusiorowski 2 ID and Alessandro F. Gualtieri 3 1 Department of Biology, Ecology and Earth Sciences, University of Calabria, via Pietro Bucci, I-87036 Rende, CS, Italy 2 Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, ul. Toszecka 99, 44-100 Gliwice, Poland; [email protected] 3 Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, I-41125 Modena, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0984-493588 Received: 4 June 2018; Accepted: 25 June 2018; Published: 28 June 2018 Abstract: The six commercial asbestos minerals (chrysotile, fibrous actinolite, crocidolite, amosite, fibrous tremolite, and fibrous anthophyllite) are classified by the IARC as carcinogenic to humans. There are currently several lines of research dealing with the inertisation of asbestos minerals among which the dry grinding process has received considerable interest. The effects of dry grinding on tremolite asbestos and anthophyllite asbestos in eccentric vibration mills have not yet been investigated. Along the research line of the mechanical treatment of asbestos, the aim of this study was to evaluate the effects of dry grinding in eccentric vibration mills on the structure, temperature stability, and fibre dimensions of tremolite asbestos from Val d’Ala, (Italy) and UICC standard anthophyllite asbestos from Paakkila mine (Finland) by varying the grinding time (30 s, 5 min, and 10 min). After grinding for 30 s to 10 min, tremolite asbestos and anthophyllite asbestos showed a decrease in dehydroxylation and breakdown temperatures due to the increase in lattice strain and the decrease in crystallinity. -
Vermiculite Is Not Asbestos
VERMICULITE IS NOT ASBESTOS There are no real causes for concern about health risks from vermiculite: a review of the mineralogy of vermiculite and its fundamental differences to asbestos explains why. John Addison Addison-Lynch, Edingburgh February 1994 SUMMARY • Vermiculite is a sheet silicate mineral that is found as flaky crystals; it is not a fibrous mineral like asbestos. Fibres of vermiculite can be formed by breakage of the flakes or by curling of the edges of the flakes. Such mineral fibres do not constitute asbestos, and fibrous shape does not, by itself, mean that they will behave like asbestos. • Vermiculite dusts, including these fibrous fragment forms, have demonstrated very few if any health effects, other than those that could be expected from any low toxicity silicate. Unlike asbestos, vermiculite has shown very few ill-effects in experimental testing with animals. Chemical testing suggests that it may not stay long enough in the lung to do serious damage. • All vermiculite ores contain a range of other minerals that were formed along with the vermiculite in the rock. Vermiculite ores from some sources were even found to contain asbestos minerals but asbestos is not intrinsic to vermiculite and only a few ore bodies have been found to contain more than tiny trace amounts. Nevertheless serious public concern was generated because of the known occurrences of asbestos in vermiculite deposits such as those in Montana that were closed some years ago • Asbestos is the name given to a number of naturally occurring fibrous silicate minerals that have been exploited for their useful properties such as thermal insulation, chemical and thermal stability, and high tensile strength. -
The Minerals of Tasmania
THE MINERALS OF TASMANIA. By W. F. Petterd, CM Z.S. To the geologist, the fascinating science of mineralogy must always be of the utmost importance, as it defines with remarkable exactitude the chemical constituents and com- binations of rock masses, and, thus interpreting their optical and physical characters assumed, it plays an important part part in the elucidation of the mysteries of the earth's crust. Moreover, in addition, the minerals of a country are invari- ably intimately associated with its industrial progress, in addition to being an important factor in its igneous and metamorphic geology. In this dual aspect this State affords a most prolific field, perhaps unequalled in the Common- wealth, for serious consideration. In this short article, I propose to review the subject of the mineralogy of this Island in an extremely concise manner, the object being, chiefly, to afford the members of the Australasian Association for the Advancement of Science a cursory glimpse into Nature's hidden objects of wealth, beauty, and scientific interest. It will be readily understood that the restricted space at the disposal of the writer effectually prevents full justice being done to an absorbing subject, which is of almost universal interest, viewed from the one or the other aspect. The economic result of practical mining operations, as carried on in this State, has been of a most satisfactory character, and has, without doubt, added greatly to the national wealth ; but, for detailed information under this head, reference must be made to the voluminous statistical information, and the general progress, and other reports, issued by the Mines Department of the local Government. -
Chemical Analysis of Actinolite from Reflectance Spectra Jonx F. Musunn
American Mineralogist, Volume 77, pages 345-358, 1992 Chemical analysis of actinolite from reflectance spectra Jonx F. Musunn Department of Geological Sciences,Box 1846, Brown University, Providence,Rhode Island 02912, U.S.A. Ansrn-c.cr Reflectancespectra of medium (0.005 pm between 0.3 and 2.7 pm) and high (0.0002 pm between1.38 and 1.42pm and 0.002 pm between2.2 and2.5 pm) spectralresolution of 19 minerals from the tremolite-actinolite solid solution seriesare used to characteiue systematic variations in absorption band parametersas a function of composition. The medium-resolution data are used to characterizebroad absorptions associatedwith elec- tronic processesin Fe3+and Fe2*, and the high-resolution data are used to characterize overtones ofOH vibrational bands. Quantitative analysesofthese data were approached using a model that treats absorptions as modified Gaussiandistributions (Sunshineet al., 1990). Each spectrum was deconvolved into a set of additive model absorption bands superimposedon a reflectancecontinuum. For absorptionsassociated with electronic pro- cesses,the model bands were shown to provide estimates of the Fe and Mg mineral chemistry with correlations of greater than 0.98. The systematic changesin the energy, width, intensity, and number of OH overtone bands are easily quantified using the mod- ified Gaussian model, and the results are highly correlated with the FelMg ratios of the samples.These results indicate that the modified Gaussianmodel can be used to quantify objectively the bulk chemistry of the minerals -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
Management of Asbestos in Vermiculite Insulation
Management of Asbestos in Summary Asbestos Fibres Zonolite® - Vermiculite Insulation ‘Vermiculite’ insulation presents a small but identifiable risk to long term health. When it is identified in a building, it should be verified and isolated from the occupied spaces of the building. Personnel required to enter the space containing the vermiculite insulation must wear protective INFORMATION FOR PWS STAFF AND FACILITY USERS clothing and approved respiratory apparatus. For additional Information, contact Technical Support Services, Asset Management Division, Public Works and Services. ASBESTOS Minerals Containing The Issue: Purpose Asbestos Fibres Some vermiculite insulation This document is to inform PWS staff about vermiculite may contain amphibole loose fill thermal insulation and provide operational safety asbestos bres. These guidelines for use when vermiculite is present in a building. products can cause health Loose fill insulation is usually installed in attic spaces above risks if disturbed during ceilings, and occasionally in the sealed compartments What is Vermiculite? maintenance, renovation or between studs in wood frame construction or as fill in cement block construction. Vermiculite was also used in demolition. However, there Vermiculite is a naturally occurring fireproofing materials, and as a lightweight aggregate in is currently no evidence of “mica-like” mineral that was mined construction materials. risk to your health if the and processed into attic insulation insulation is sealed starting in the 1920’s and ending in Vermiculite is a shiny mineral, similar to mica, which pops (encapsulated) behind the early 1990’s. When heated to like corn when heated. The puffy product, as light as cork, wallboards and oorboards, around 1000 degrees C, it pops (or was once a popular form of building insulation and is still an isolated in an attic, or puffs up) which creates pockets of ingredient in potting soil.