Chemical Analysis of Actinolite from Reflectance Spectra Jonx F. Musunn

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Analysis of Actinolite from Reflectance Spectra Jonx F. Musunn American Mineralogist, Volume 77, pages 345-358, 1992 Chemical analysis of actinolite from reflectance spectra Jonx F. Musunn Department of Geological Sciences,Box 1846, Brown University, Providence,Rhode Island 02912, U.S.A. Ansrn-c.cr Reflectancespectra of medium (0.005 pm between 0.3 and 2.7 pm) and high (0.0002 pm between1.38 and 1.42pm and 0.002 pm between2.2 and2.5 pm) spectralresolution of 19 minerals from the tremolite-actinolite solid solution seriesare used to characteiue systematic variations in absorption band parametersas a function of composition. The medium-resolution data are used to characterizebroad absorptions associatedwith elec- tronic processesin Fe3+and Fe2*, and the high-resolution data are used to characterize overtones ofOH vibrational bands. Quantitative analysesofthese data were approached using a model that treats absorptions as modified Gaussiandistributions (Sunshineet al., 1990). Each spectrum was deconvolved into a set of additive model absorption bands superimposedon a reflectancecontinuum. For absorptionsassociated with electronic pro- cesses,the model bands were shown to provide estimates of the Fe and Mg mineral chemistry with correlations of greater than 0.98. The systematic changesin the energy, width, intensity, and number of OH overtone bands are easily quantified using the mod- ified Gaussian model, and the results are highly correlated with the FelMg ratios of the samples.These results indicate that the modified Gaussianmodel can be used to quantify objectively the bulk chemistry of the minerals of the tremolite-actinolite solid solution seriesusing high-resolution reflectancespectra ofthe OH overtone bands. INrnooucrroN into realistic probability distributions. In the analyses Extraction of quantitative geochemicalinformation is presentedhere, a similar approach is applied to the ab- vibrational pro- an important goal in reflectancespectroscopy, both as a sorptions associatedwith electronic and the tool for rapid and nondestructivelaboratory analysesand cessesin calcic amphiboles and, more specifically, for interpretation of remotely obtained observations of minerals of the tremolite-actinolite-ferroactinolite solid very in the Earth and other solid bodies in the solar system.The solution series. Calcic amphiboles are common chemical and crystallographicbases for the interpretation terrestrial geologic terranes, especially mafic and ultra- ofabsorption bands in reflectancespectra are reasonably mafic terrane,and specificcompositions often can be used well understood(e.g., Burns, 1970;Farmer,1974;Hunt, to infer physical conditions of mineral and rock forma- (e.g., Annersten, 1977). The assignment of a particular absorption to a tion Laird and Albee, l98l; Skogbyand goal specificcrystallographic site geometryand absorbingspe- 1985).The of this investigationis not only to model cies have proven consistent acrossa large range ofcom- the specificabsorptions associated with calcic amphiboles provide processes positions and crystal structures.This knowledgehas been but also to insight into the absorption general min- extremely valuable for the remote identification of min- in that can be used in the analysisof other groups. eral specieson other planets(e.g., Pieters, 1986; McCord erals and mineral Background discussionsofac- pro- et al., 1982).However, there have been few detailed anal- tinolite crystal structure, chemistry, and absorption presented yses to determine quantitative associationsbetween the cesses are below, followed by a detailed position, shape,and strength of absorption bands in re- discussion of the modeling approach. The results of the presented flectancespectra and the chemical composition of min- modeling of the reflectance spectra are then model erals.A sound understandingofthe relationship between with an emphasistoward the associationbetween absorption band parametersand specific mineral chem- parametersand sample chemistry. istry would have a broad range of applications in the reduction and analysis of remotely obtained and labora- Actinolite crystal structure and chemistry tory reflectancespectra. Understanding of the variability of the reflectance One desiresa method of deconvolving reflectancespec- spectra shown in Figure I requires a basic knowledge of tra into concentrationsofabsorbing speciesthat produces crystal structure and chemistry. The idealized actinolite quantitative results and is generalin approach. Sunshine chemical formula, Car(Mg,Fe)rSisorr(OH)r,is rarely en- et al. (1990) have made some progressin this area by countered with natural samples.There are generally ap- deconvolving Fe2*absorptions in pyroxenesand olivines preciable amounts of Al3*, Fe3*,Mn, Cr, and Na in these 0003404x/92l0304-o345$02.00 345 346 MUSTARD: ACTINOLITE ANALYSES FROM REFLECTANCE SPECTRA 1 o o 17- G' 4' C) (D 7 (r(l) 1 5 2 0 1'/ FawavetSfiogtn, 112 'ow.rrt3tf,gtn .pf, Infm in a generalprogression from high-Fe samplesnear the bottom to low-Fe samplesnear the top. (a) Data obtained at a sampling resolution of 0.005 pm. The number adjacent to each spectrum 0.30 0.60 o.g0 1.20 t.50 1.80 z1o 240 near 0.6 pm refersto the samplenumber, and the numbers near WavelengthIn /rm 1.5 pm give the percent reflectanceof each sample at 1.5 pm. (b) Reflectancespectra obained at a sampling resolution of 2 A Fig. 1. Reflectancespectra of 19 samplesfrom the tremolite- between 1.38 and 1.43 pm; (c) data obtained at a sampling res- actinolite solid solution series.All data have beenoffset for clar- olution of 0.002 pm between 2.2 and 2.45 rrm. The numbers ity approximately 50/orelative to each other. The numbers on betweenb and c indicate the samplenumber of the spectrajoined the left side of each plot indicate the reflectancescale. There is by the solid lines. minerals. The actinolite crystal structure is monoclinic shown that Fe2* is enriched in Ml and M3 relative to with space group C2/m and consists of two unique tet- M2 in calcicamphiboles (Burns and Prentice,1968; Ernst rahedralsites (Tl, T2), four unique octahedrallycoordi- and Wai, 1970;Wilkens et a1.,1970; Wilkens, 1970).Mg nated sites(Ml, M2, M3, and M4), and one l2-coordi- showsa site preferencethat is complementaryto Fe2*.Ca nated site (A) (Ghose,l96l). almost exclusively occupiesthe M4 site, but there is rare- Site populations are complex in amphiboles (seeHaw- ly enough Ca to fill this site completely. Vacant M4 sites thorne, 1983, for a review) and are important for the are preferentially filled by available Mn and Fe2*. interpretation and quantifi cation of actinolite reflectance spectra.Al3* shows a site preferencefor Tl when in tet- Sourcesof absorption in calcic amphiboles rahedral coordination and the M2 site when in octahedral Three basic processesare responsible for the suite of coordination. Fe3*,like Alr*, exhibits a preferencefor the absorptions observed in the spectra shown in Figure l. M2 site (Wilkens, 1970; Hawthorne, 1983; Skogbyand Excitation of d-orbital electronsin transition metal ions, Annersten,1985). However, local chargebalance can in- particularly Fe, is primarily responsiblefor the broad ab- fluencethese general distributions. Although Fe2+can oc- sorptionscentered between 0.85 and 1.2 p.m.The broad cupy any ofthe four octahedral sites and the specificor- absorption centered near 2.45 pm is largely due to an dering among thesesites is complex, severalstudies have electronic transition. Absorptions involving transfer of MUSTARD: ACTINOLITE ANALYSES FROM REFLECTANCE SPECTRA 347 electrons between anions and cations generally exhibit Burns and Strens,1966; Bancroft and Burns, 1969;Wil- band minima at wavelengthsless than about 0.5 pm, but kens, 1970;Burns and Greaves,l97l;Law,1976). The wings ofthese absorptions do extend through the visible wavelength position of the OH- stretching fundamental to the near infrared. Cation-to-cation chargetransfer ab- dependson the cation occupancyof the two M I and one sorptions can have well-defined visible to near infrared M3 sites as a unit. For an ideal actinolite solid solution, absorptions. Finally, overtones and combination over- there are four unique distributions: A : (MgMgMg), B : tones of fundamental vibrational bands associatedwith (MgMgFe), C : (FeFeMg),and D : (FeFeFe).Since each OH ions account for the narrow featuresnear 1.4 rrm ond results in a distinct absorption, there are four possible at wavelengthslonger than 2.0 pm. Details of each cate- OH- stretching fundamentals in a simple Fe-Mg amphi- gory of absorption and relationship to cation and anion bole system.Additional bands can be expectedif the Ml site occupancyare discussedbelow. and M3 sitesare occupiedby other ions (e.g.,A13*, Fe3*) Electronic transitions. The energy ofelectronic transi- or the A site is occupied by Na or K. tion absorptions is determined by the crystal field split- The narrow absorptions between 2.2 and 2.5 pm (see ting, whereasthe intensity or strength ofthe absorptions Figs. la and lc) are combination overtonesinvolving OH- is governedby probability considerationsdetermined pri- stretching vibrations and metal-OH- bending modes marily by site distortion and symmetry (Burns, 1970; (Hunt, 1977).Although the location of the fundamental White and Keester,1967). The broad, indistinct absorp- metal-OH bendingmodes is reasonablywell known (500- tions between0.85 and 1.2 p.mare generallyassigned to 800 cm-'or 12-15 pm), there has been little work to Fe2* electronictransitions in Ml, M2, and M3 (Haw- quantify relationships between parameters that charac- thorne, 198l). However, little
Recommended publications
  • Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)
    minerals Article Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China) Ying Jiang 1, Guanghai Shi 1,* , Liguo Xu 2 and Xinling Li 3 1 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Geological Museum of China, Beijing 100034, China; [email protected] 3 Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang 830004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-8232-1836 Received: 6 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents.
    [Show full text]
  • Riebeckite Na2[(Fe2+,Mg)3Fe 2 ]Si8o22(OH)
    2+ 3+ Riebeckite Na2[(Fe ; Mg)3Fe2 ]Si8O22(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As prismatic crystals, to 20 cm. Commonly ¯brous, asbestiform; earthy, massive. Twinning: Simple or multiple twinning 100 . k f g Physical Properties: Cleavage: Perfect on 110 , intersecting at 56 and 124 ; partings f g ± ± on 100 , 010 . Fracture: [Conchoidal to uneven.] Tenacity: Brittle. Hardness = 6 f g f g D(meas.) = 3.28{3.44 D(calc.) = 3.380 Optical Properties: Semitransparent. Color: Black, dark blue; dark blue to yellow-green in thin section. Luster: Vitreous to silky. Optical Class: Biaxial (+) or ({). Pleochroism: X = blue, indigo; Y = yellowish green, yellow- brown; Z = dark blue. Orientation: Y = b; X c = 8 to 7 ; Z c = 6 {7 . Dispersion: ^ ¡ ± ¡ ± ^ ± ± Strong. ® = 1.656{1.697 ¯ = 1.670{1.708 ° = 1.665{1.740 2V(meas.) = 50±{90±. Cell Data: Space Group: C2=m: a = 9.822 b = 18.07 c = 5.334 ¯ = 103:52± Z = 2 X-ray Powder Pattern: Doubrutscha [Dobrudja], Romania. (ICDD 19-1061). 8.40 (100), 3.12 (55), 2.726 (40), 2.801 (18), 4.51 (16), 2.176 (16), 3.27 (14) Chemistry: (1) (2) (1) (2) SiO2 52.90 50.45 CaO 0.12 0.08 TiO2 0.57 0.14 Li2O 0.54 Al2O3 0.12 1.96 Na2O 6.85 6.80 Fe2O3 17.20 17.52 K2O 0.03 1.48 Cr2O3 0.04 F 2.58 + FeO 17.95 17.90 H2O 0.87 MnO 0.00 1.40 O = F 1.09 ¡ 2 MgO 2.96 0.05 Total 98.74 100.68 (1) Dales Gorge Iron Formation, Western Australia; by electron microprobe, corresponds to 2+ 3+ (Na2:00Ca0:02K0:01)§=2:03(Fe2:26Mg0:66Ti0:06)§=2:98Fe1:95(Si7:98Al0:02)§=8:00O22(OH)2: (2) Pikes 2+ Peak area, Colorado, USA; corresponds to (Na2:02K0:29Ca0:01)§=2:32(Fe2:30Li0:33Mn0:18Al0:10 3+ Ti0:02Mg0:01)§=2:94Fe2:02(Si7:75Al0:25)§=8:00O22[F1:25(OH)0:89]§=2:14: Polymorphism & Series: Forms a series with magnesioriebeckite.
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    Rdosdladq1//6Lhmdq`knesgdLnmsg9@bshmnkhsd This month’s featured mineral has many interesting and unusual varieties: While our specimens have well-developed prismatic crystals, which is unusual for actinolite, a fibrous variety is a former ore of asbestos, and a microcrystalline variety is one of the two types of the gemstone jade. Read on! OGXRHB@K OQNODQSHDR 2+ Chemistry: GCa2(Mg,Fe )5Si8O22(OH)2 Basic Calcium Magnesium Iron Silicate (Calcium Magnesium Iron Silicate Hydroxide) Class: Silicates Subclass: Inosilicates (Double-Chain Silicates) Group: Tremolite (Amphibole Group) Crystal System: Monoclinic Crystal Habits: Usually long prismatic with diamond-shaped cross section; also bladed, columnar, acicular, divergent, fibrous (asbestiform), and radiating. A compact, microcrystalline form is known as nephrite jade. Color: Bright-to-dark green, grayish-green, and greenish-black. Luster: Vitreous; silky and pearly on cleavage surfaces. Transparency: Transparent to translucent Streak: Colorless to white Cleavage: Perfect in two directions lengthwise with intersecting cleavage planes. Fracture: Splintery, uneven; fibrous forms are flexible. Hardness: 5.0-6.0, nephrite variety is 6.5. Specific Gravity: 3.0-3.5 Luminescence: None Refractive Index: 1.63-1.66 Distinctive Features and Tests: Best field marks are the prismatic, often-radiating crystal habit and narrow cleavage-intersection angle. Can be confused with wollastonite, which is fluorescent; the tourmaline-group minerals, which lack cleavage; and epidote, which has a broader cleavage angle. Laboratory methods are necessary to differentiate actinolite from tremolite and ferro- actinolite, as explained in the box on Page 3. Dana Classification Number: 66.1.3a.2 M @L D The name “actinolite,” pronounced ack-TIH-no-lite, derives from the Greek aktino, meaning “ray,” a reference to the common radiate habit of its prismatic crystals.
    [Show full text]
  • The Minerals of Tasmania
    THE MINERALS OF TASMANIA. By W. F. Petterd, CM Z.S. To the geologist, the fascinating science of mineralogy must always be of the utmost importance, as it defines with remarkable exactitude the chemical constituents and com- binations of rock masses, and, thus interpreting their optical and physical characters assumed, it plays an important part part in the elucidation of the mysteries of the earth's crust. Moreover, in addition, the minerals of a country are invari- ably intimately associated with its industrial progress, in addition to being an important factor in its igneous and metamorphic geology. In this dual aspect this State affords a most prolific field, perhaps unequalled in the Common- wealth, for serious consideration. In this short article, I propose to review the subject of the mineralogy of this Island in an extremely concise manner, the object being, chiefly, to afford the members of the Australasian Association for the Advancement of Science a cursory glimpse into Nature's hidden objects of wealth, beauty, and scientific interest. It will be readily understood that the restricted space at the disposal of the writer effectually prevents full justice being done to an absorbing subject, which is of almost universal interest, viewed from the one or the other aspect. The economic result of practical mining operations, as carried on in this State, has been of a most satisfactory character, and has, without doubt, added greatly to the national wealth ; but, for detailed information under this head, reference must be made to the voluminous statistical information, and the general progress, and other reports, issued by the Mines Department of the local Government.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • LMHC Information Sheet # 11 Jade and Related Minerals
    LMHC Standardised Gemmological Report Wording (version 4; December 2011) LMHC Information Sheet # 11 Jade and related minerals - Definitions - Report wording Members of the Laboratory Manual Harmonisation Committee (LMHC) have standardised the nomenclature that they use to describe nephrite jade, jadeite jade, omphacite, kosmochlor. Definitions Jade is a trade name that encompasses jadeite and nephrite only. Nephrite is a solid solution of the amphibole group minerals actinolite and tremolite composed of an interlocking mass of fibrous crystals. Its colour commonly ranges from white to deep green, but can also be brown or black. The ideal chemical formula is Ca2(Mg,Fe)5Si8O22(OH)2. Jadeite is a pyroxene mineral and forms solid solutions with other pyroxene members such as augite and diopside, aegirine, omphacite and kosmochlor. Gem quality called as ‘jadeite jade’ is not a single crystal but a rock consisting of aggregated fibrous or granular crystals of jadeite and considerable amount of various minerals. Its colour commonly ranges from white through pale green to deep green but can also be blue-green, dark green to black, and other rare colours of pink, lavender varieties. Mineralogically jadeite has the ideal chemical formula NaAlSi2O6. Omphacite is a member of the pyroxene group with a chemical formula of (Na, Ca) (Al, Mg, Fe) Si2O6. Gem quality omphacite displays pale green, deep green, black or nearly colourless varieties. Kosmochlor is a green chromium and sodium rich pyroxene with the chemical formula NaCrSi2O6. Pyroxenes have
    [Show full text]
  • Identification Tables for Common Minerals in Thin Section
    Identification Tables for Common Minerals in Thin Section These tables provide a concise summary of the properties of a range of common minerals. Within the tables, minerals are arranged by colour so as to help with identification. If a mineral commonly has a range of colours, it will appear once for each colour. To identify an unknown mineral, start by answering the following questions: (1) What colour is the mineral? (2) What is the relief of the mineral? (3) Do you think you are looking at an igneous, metamorphic or sedimentary rock? Go to the chart, and scan the properties. Within each colour group, minerals are arranged in order of increasing refractive index (which more or less corresponds to relief). This should at once limit you to only a few minerals. By looking at the chart, see which properties might help you distinguish between the possibilities. Then, look at the mineral again, and check these further details. Notes: (i) Name: names listed here may be strict mineral names (e.g., andalusite), or group names (e.g., chlorite), or distinctive variety names (e.g., titanian augite). These tables contain a personal selection of some of the more common minerals. Remember that there are nearly 4000 minerals, although 95% of these are rare or very rare. The minerals in here probably make up 95% of medium and coarse-grained rocks in the crust. (ii) IMS: this gives a simple assessment of whether the mineral is common in igneous (I), metamorphic (M) or sedimentary (S) rocks. These are not infallible guides - in particular many igneous and metamorphic minerals can occur occasionally in sediments.
    [Show full text]
  • The Tremolite-Actinolite-Ferro–Actinolite Series
    American Mineralogist, Volume 85, pages 1239–1254, 2000 The tremolite-actinolite-ferro–actinolite series: Systematic relationships among cell parameters, composition, optical properties, and habit, and evidence of discontinuities JENNIFER R. VERKOUTEREN1,* AND ANN G. WYLIE2 1Chemical Sciences and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A. 2Laboratory for Mineral Deposits Research, Department of Geology, University of Maryland, College Park, Maryland 20742, U.S.A. ABSTRACT Unit-cell parameters, optical properties, and chemical compositions have been measured for 103 samples in the tremolite-actinolite-ferro-actinolite series. The average values of the non-essential constituents are: TAl = 0.10(11), CAl = 0.06(6), B(Fe, Mn, Mg) = 0.09(7), BNa = 0.04(5), ANa = 0.09(9), and Cr, Ti, and K ≅ 0. Asbestiform actinolite samples have lower Al contents than massive or “byssolitic” actinolite samples. Unit-cell parameters for end members tremolite and ferro-actino- lite based on regressions of the data are: a = 9.841 ± 0.003 Å, 10.021 ± 0.011 Å; b = 18.055 ± 0.004 Å, 18.353 ± 0.018 Å; c = 5.278 ± 0.001 Å, 5.315 ± 0.003 Å; and cell volume = 906.6 ± 0.5 Å3, 944 ± 2 Å3. The changes in a, b, and cell volume with ferro-actinolite substitution are modeled with quadratic functions, and the change in c with ferro-actinolite substitution is modeled with a linear function. There is a positive correlation between c and Al that results in a discrimination between asbestiform and massive or “byssolitic” habits for c and for the refractive indices.
    [Show full text]
  • GLOSSARY Actinolite
    GLOSSARY Actinolite - One of six naturally-occurring asbestos minerals. It is not normally used commercially. Action Level - A level of airborne fibers specified by OSHA as a warning or alert level. It is 0.1 fibers per cubic centimeter of air, 8-hour time-weighted average, as measured by phase contrast microscopy. AHERA - Asbestos Hazard Emergency Response Act. Amended Water - Water to which surfactant has been added. Amosite - An asbestiform mineral of the amphibole group. It is the second most commonly used form of asbestos in the U.S. (brown asbestos). Amphibole - One of the two major groups of minerals from which the asbestiform minerals are derived; distinguished by their chain-like crystal structure and chemical composition. Amosite and crocidoIite are examples of amphibole minerals. Anthophyllite - One of six naturally-occurring asbestos minerals. It is of limited commercial value. Asbestos - A generic name given to a number of naturally-occurring hydrated mineral silicates that possess a unique crystalline structure, are incombustible in air, and are separable into fibers. Asbestos includes the asbestiform varieties of chrysatile (serpentine), crocidolite (riebeckite), amosite (cummingtonite-grunerite), anthophyllite, actinolite, and tremolite. Asbestos Bodies - Coated asbestos fibers often seen in the lungs of asbestos-exposure victims. Asbestos-Containing Building Material (ACBM) - Surfacing ACM, thermal system insulation ACM, or miscellaneous ACM that is found in or on interior structural members or other parts of a school building (AHERA definition). Asbestos-Containing Material (ACM1) - Any material or product which contains more than 1 percent asbestos (AHERA definition). Asbestosis - A scarring CD the lungs caused by exposure to asbestos. Continued exposure may lead to degeneration of lung function and death.
    [Show full text]
  • 1. Public Health Statement
    ASBESTOS 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about asbestos and the effects of exposure. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal cleanup activities. Asbestos has been found in at least 83 of the 1,585 current or former NPL sites. However, the total number of NPL sites evaluated for this substance is not known. As more sites are evaluated, the sites at which asbestos is found may increase. This information is important because exposure to this substance may harm you and because these sites may be sources of exposure. When a substance is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. This release does not always lead to exposure. You are exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. If you are exposed to asbestos, many factors determine whether you’ll be harmed. These factors include the dose (how much), the duration (how long), the fiber type (mineral form and size distribution), and how you come in contact with it. You must also consider the other chemicals you’re exposed to and your age, sex, diet, family traits, lifestyle (including whether you smoke tobacco), and state of health. 1.1 WHAT IS ASBESTOS? Asbestos is the name given to a group of six different fibrous minerals (amosite, chrysotile, crocidolite, and the fibrous varieties of tremolite, actinolite, and anthophyllite) that occur naturally in the environment.
    [Show full text]
  • Gemmological Association and Gem Testing Laboratory of Great Britain
    Gemmology Volume 26 No. 7 The Gemmological Association and Gem Testing Laboratory of GreatvBritain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl President: Professor R.A. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G. Kent, R.K. Mitchell Honorary Fellows: Chen Zhonghui, R.A. Howie, R.T. Liddicoat Jnr, K. Nassau Honorary Life Members: H. Bank, DJ. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, N.W. Deeks, R.R. Harding, I. Mercer, J. Monnickendam, MJ. O'Donoghue, E. Stern, I. Thomson, V.P. Watson Members' Council: A.J. Allnutt, P. Dwyer-Hickey, S.A. Everitt, A.G. Good, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, P.G. Read, R. Shepherd, PJ. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West -1. Knight, Scottish - B. Jackson Examiners: A.J. Allnutt, M.Sc, Ph.D., FGA, L. Bartlett, B.Sc., M.Phil., FGA, DGA, E.M. Bruton, FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Howe, FGA, DGA, B. Jackson, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, M. Newton, B.Sc, D.Philv CJ.E. Oldershaw, B.Sc. (Hons), FGA, H.L. Plumb, B.Sc, FGA, DGA, R.D. Ross, B.Sc, FGA, DGA, PA. Sadler, B,Sc, FGA, DGA, E. Stern, FGA, DGA, S.M.
    [Show full text]
  • Mohsen Manutchehr-Danai Dictionary of Gems and Gemology Mohsen Manutchehr-Danai
    Mohsen Manutchehr-Danai Dictionary of Gems and Gemology Mohsen Manutchehr-Danai Dictionary of Gems and Gemology 2nd extended and revised edition With approx. 25 000 entries, 1 500 figures and 42 tables Author Professor Dr. Mohsen Manutchehr-Danai Dr. Johann-Maier-Straße 1 93049 Regensburg Germany Library of Congress Control Number: 2004116870 ISBN 3-540-23970-7 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplica- tion of this publication or parts thereof is permitted only under the provisions of the German Copy- right Law of September 9, 1965, in its current version, and permission for use must always be ob- tained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Erich Kirchner, Heidelberg Typesetting: Camera ready by the author Production: Luisa Tonarelli Printing and binding: Stürtz, Würzburg Printed on acid-free paper 30/2132/LT – 5 4 3 2 1 0 Preface to the Second Edition The worldwide acceptance of the first edition of this book encouraged me to exten- sively revise and extend the second edition.
    [Show full text]