16178156.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

16178156.Pdf PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/93702 Please be advised that this information was generated on 2017-12-06 and may be subject to change. SPEEDING UP THE SNAIL’S PACE Bird-mediated dispersal of aquatic organisms Casper H.A. van Leeuwen Speeding up the snail’s pace Bird-mediated dispersal of aquatic organisms The work in this thesis was conducted at the Netherlands Institute of Ecology (NIOO-KNAW) and Radboud University Nijmegen, cooperating within the Centre for Wetland Ecology. This thesis should be cited as: Van Leeuwen, C.H.A. (2012) Speeding up the snail’s pace: bird-mediated dispersal of aquatic organisms. PhD thesis, Radboud University Nijmegen, Nijmegen, The Netherlands ISBN: 978-90-6464-566-2 Printed by Ponsen & Looijen, Ede, The Netherlands Speeding up the snail’s pace Bird-mediated dispersal of aquatic organisms PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op het gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het College van Decanen in het openbaar te verdedigen op woensdag 27 juni 2012 om 13.00 uur precies door Casper Hendrik Abram van Leeuwen geboren op 18 september 1983 te Odijk Promotoren: Prof. dr. Jan van Groenendael Prof. dr. Marcel Klaassen (Universiteit Utrecht) Copromotor: Dr. Gerard van der Velde Manuscriptcommissie: Prof. dr. Hans de Kroon Dr. Gerhard Cadée (Koninklijk NIOZ) Prof. dr. Edmund Gittenberger (Universiteit Leiden) Prof. dr. Andy Green (Estación Biológica de Doñana, CSIC, Spain) Prof. dr. Luc de Meester (KU Leuven, Belgium) Contents 1. General introduction 7 2. Gut travellers: internal dispersal of aquatic organisms by waterfowl 17 3. Experimental quantification of long distance dispersal potential of 49 aquatic snails in the gut of migratory birds 4. Vector activity and propagule size affect dispersal potential by vertebrates 67 5. Prerequisites for flying snails: external transport potential of aquatic 85 snails by waterbirds 6. How did this snail get here? Multiple dispersal vectors revealed for an 101 aquatic invasive species 7. A snail on four continents: bird-mediated dispersal of a parasite vector? 121 8. Synthesis 141 Summary 161 Nederlandse samenvatting 165 Dankwoord 169 Affiliations of co-authors 173 Publication list 174 Curriculum vitae 175 Chapter 1 General introduction Casper H.A. van Leeuwen 7 Chapter 1 Dispersal Movement of species in the landscape is essential for the long term survival of their populations. It enables species to colonize new suitable habitat and escape potential deteriorating conditions in their present habitat, which is crucial for their prolonged existence in a continuously dynamic environment (Cain et al., 2000; Holt, 2003; Lest- er et al., 2007). Biological dispersal, defined as the directional movement away from a source location to establish or reproduce, occurs in nearly all species and has im- portant consequences at the individual, population and community level (Clobert et al., 2001; Bullock et al., 2002; Nathan, 2006). It occurs at all spatial scales, ranging from vertical movements of larvae in the water column (Sundelöf & Jonsson, 2011) to pollen drifting in wind over many kilometres in rainforests (Ndiade-Bourobou et al., 2010). Dispersal thereby influences most ecological and evolutionary processes (Dieckmann et al., 1999). However, for many species it is still unknown how and in which directions they disperse (Clobert et al., 2001). Dispersal allows individuals to find other locations where there may be more nutrients and less diseases and predators (McKinnon et al., 2010; Altizer et al., 2011), and can dilute negative effects of inbreeding or loss of genetic variation in popula- tions (Hamilton & May, 1977; Fayard et al., 2009). Nowadays, in an attempt to cope with global change processes, a species’ ability to escape from rapidly deteriorat- ing environmental conditions or exploit new suitable areas may be of even greater relevance. Dispersal can thereby positively affect biodiversity if it allows species to e.g. follow changing climatic boundaries, maintain populations in increasingly fragmented landscapes or avoid genetic drift in small populations (Kokko & Lopez- Sepulcre, 2006; Pearson, 2006). On the other hand, biodiversity can be negatively affected by increased dispersal rates if species with very good dispersal abilities ex- pand their home ranges drastically and thereby outcompete other species after inva- sion (Phillips et al., 2006; Van der Velde et al., 2010). Vector-mediated dispersal Despite the ecological significance of dispersal for many species, the heterogene- ity of the earth’s landscape may restrict their movement. Whereas it is often rela- tively easy to travel within a certain habitat type (e.g. a forest, ocean or lake), it becomes more challenging when this involves crossing a different type of terrain over a longer distance, i.e. an ecological barrier (Cain et al., 2000). Nevertheless, even remote islands in the ocean and isolated ponds in the desert often harbour a high biodiversity (Schabetsberger et al., 2009; Jocque et al., 2010). Many species are able to cross ecological barriers to suitable patches using their own propulsion, i.e. active dispersers (Jenkins et al., 2007, see also Fig. 1.1). Others, so-called passive dispers- ers, require transport by vectors (Zickovich & Bohonak, 2007). Organisms may be blown across land or sea by the wind (anemochory, e.g. Soons & Ozinga, 2005), can be carried by water (hydrochory, e.g. Van de Meutter et al., 2006), or may be trans- ported by more mobile animals (zoochory, e.g. Enders & Vander Wall, 2011; Pollux, 2011) including humans (e.g. Wichmann et al., 2009). Although passive dispersal can involve transport of whole organisms, it frequently involves transport of dispersal units called “propagules”. These are here considered all (parts of) organisms that 8 General introduction can disperse and regenerate, regardless of their dispersal mode or metabolic state (e.g. plant seeds, fruits, algae spores, cladoceran ephippia, bryozoan statoblasts, pieces of plants that can regenerate). Islands provide ideal model systems to investigate vector-mediated dispersal of propagules (MacArthur & Wilson, 1967), because island biodiversity is largely de- termined by which species are able to disperse across another habitat type from (dis- tant) source populations (Gillespie et al., 2008). Freshwater habitats, often referred to as “islands in a sea of land” (essay of 1844 of C. Darwin, in F. Darwin 1909), are particularly suitable to study dispersal of aquatic organisms over land. The fact that many wetlands harbour a high biodiversity (Green et al., 2002b; Junk et al., 2006) seems contrasting to their often high degree of isolation, and can usually not entirely be explained by wind- and water-mediated dispersal. This paradox already fasci- nated Darwin over 150 years ago (Darwin, 1859). It made him propose waterbirds as potential dispersal vectors for aquatic organisms. Waterbirds travel fast, directed and in large numbers between ecologically simi- lar habitats (Figuerola & Green, 2002; Green et al., 2002a; Nathan et al., 2008). Terres- trial birds are already known to be effective dispersers of plant seeds and fruits that survive digestion after ingestion (internal transport or endozoochory, reviewed by Traveset, 1998). Seeds and fruits may also be transported on feet or between feath- ers of birds (external transport or ectozoochory, reviewed by Sorensen, 1986). How- ever, in comparison to what is known in terrestrial ecosystems, knowledge on the potential of waterbirds to disperse aquatic organisms is still limited (reviewed by Figuerola & Green, 2002; Green & Figuerola, 2005). Species distributions Capacity to Capacity to disperse survive in environment Active dispersal Passive dispersal by vectors (own propulsion) Animals Wind Water Birds Other animals, e.g. Chapter 6 mammals, fish, insects at small scale Internal External Chapter 7 dispersal dispersal at large scale Chapter 2,3,4 Chapter 5 Molecular genetic Mechanistic approach approach Figure 1.1: Conceptual diagram of the topics addressed in this thesis. Species distributions are determined by their capacity to disperse through as well as survive in their environment. Dispersal can be either passive by vectors such as animals, wind or water, or active by own propulsion. In this thesis the mechanistic approach is used to investigate internal and external dispersal by birds, whereas the molecular genetic approach addresses dispersal on small scales by multiple vectors and dispersal on a large scale by birds. 9 Chapter 1 This is surprising, given the presumably even higher relevance of dispersal between discrete, isolated aquatic systems than within more continuous terrestrial habitats. The aim of this thesis was therefore to assess the importance of waterbirds for the dispersal of aquatic organisms (Fig. 1.1). Waterbirds as vectors for small aquatic species The idea of waterbirds as dispersal vectors originates from Darwin (1859), followed by Kew (1893) and Ridley (1930). After the idea was mentioned, scientists started to report observations of small species adhering to waterbirds that were caught in the field for other purposes (Adams, 1905; McAtee, 1914). These field observations were extended by a series of experiments on waterbird-mediated dispersal by Proctor and
Recommended publications
  • Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
    Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae.
    [Show full text]
  • A Contribution to Distribution of Genus Stagnicola and Catascopia (Gastropoda: Lymnaeidae) in the Czech Republic
    Malacologica Bohemoslovaca (2008), 7: 70–73 ISSN 1336-6939 A contribution to distribution of genus Stagnicola and Catascopia (Gastropoda: Lymnaeidae) in the Czech Republic LUBOŠ BERAN Kokořínsko Protected Landscape Area Administration, Česká 149, CZ-27601 Mělník, Czech Republic; e-mail: [email protected] BERAN L., 2008: A contribution to distribution of genus Stagnicola and Catascopia (Gastropoda: Lymnaeidae) in the Czech Republic. – Malacologica Bohemoslovaca, 7: 70–73. Online serial at <http://mollusca.sav.sk> 16-Sep-2008. This paper brings a contribution to the distribution of genus Stagnicola Jeffreys, 1830 and Catascopia Meier- Brook & Bargues, 2002 in the Czech Republic. Occurrence of four species has been confirmed in the Czech Republic so far. Two species – Stagnicola corvus (Gmelin, 1791) and S. palustris (O.F. Müller, 1774) (including S. turricula (Held, 1836)), are widespread and common especially in lowlands along bigger rivers (Labe, Ohře, Morava, Dyje, Odra). Occurrence of S. fuscus (Pfeiffer, 1821) is restricted to the territory of the north-western part of Bohemia and Catascopia occulta (Jackiewicz, 1959) is a rare species with only two known sites. Key words: Mollusca, Gastropoda, Stagnicola, Catascopia, distribution Introduction Material and methods Genus Stagnicola Jeffreys, 1830 comprises gastropods of The data used in this study are from the author’s database medium size, with gradually increasing whorls and anthra- of over 45.000 records of aquatic molluscs, most of which cite black pigmentation of their conchs. Only one species, were obtained by field research during the previous 10 Stagnicola palustris (O.F. Müller, 1774), was accepted years. The remainder comes from Czech museum colle- 1959.
    [Show full text]
  • Taxonomic Status of Stagnicola Palustris (O
    Folia Malacol. 23(1): 3–18 http://dx.doi.org/10.12657/folmal.023.003 TAXONOMIC STATUS OF STAGNICOLA PALUSTRIS (O. F. MÜLLER, 1774) AND S. TURRICULA (HELD, 1836) (GASTROPODA: PULMONATA: LYMNAEIDAE) IN VIEW OF NEW MOLECULAR AND CHOROLOGICAL DATA Joanna Romana Pieńkowska1, eliza Rybska2, Justyna banasiak1, maRia wesołowska1, andRzeJ lesicki1 1Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland (e-mail: [email protected], [email protected], [email protected], [email protected]) 2Nature Education and Conservation, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland ([email protected], [email protected]) abstRact: Analyses of nucleotide sequences of 5’- and 3’- ends of mitochondrial cytochrome oxidase subunit I (5’COI, 3’COI) and fragments of internal transcribed spacer 2 (ITS2) of nuclear rDNA gene confirmed the status of Stagnicola corvus (Gmelin), Lymnaea stagnalis L. and Ladislavella terebra (Westerlund) as separate species. The same results showed that Stagnicola palustris (O. F. Müll.) and S. turricula (Held) could also be treated as separate species, but compared to the aforementioned lymnaeids, the differences in the analysed sequences between them were much smaller, although clearly recognisable. In each case they were also larger than the differences between these molecular features of specimens from different localities of S. palustris or S. turricula. New data on the distribution of S. palustris and S. turricula in Poland showed – in contrast to the earlier reports – that their ranges overlapped. This sympatric distribution together with the small but clearly marked differences in molecular features as well as with differences in the male genitalia between S.
    [Show full text]
  • Molluscs of the Dürrenstein Wilderness Area
    Molluscs of the Dürrenstein Wilderness Area S a b i n e F ISCHER & M i c h a e l D UDA Abstract: Research in the Dürrenstein Wilderness Area (DWA) in the southwest of Lower Austria is mainly concerned with the inventory of flora, fauna and habitats, interdisciplinary monitoring and studies on ecological disturbances and process dynamics. During a four-year qualitative study of non-marine molluscs, 96 sites within the DWA and nearby nature reserves were sampled in cooperation with the “Alpine Land Snails Working Group” located at the Natural History Museum of Vienna. Altogether, 84 taxa were recorded (72 land snails, 12 water snails and mussels) including four endemics and seven species listed in the Austrian Red List of Molluscs. A reference collection (empty shells) of molluscs, which is stored at the DWA administration, was created. This project was the first systematic survey of mollusc fauna in the DWA. Further sampling might provide additional information in the future, particularly for Hydrobiidae in springs and caves, where detailed analyses (e.g. anatomical and genetic) are needed. Key words: Wilderness Dürrenstein, Primeval forest, Benign neglect, Non-intervention management, Mollusca, Snails, Alpine endemics. Introduction manifold species living in the wilderness area – many of them “refugees”, whose natural habitats have almost In concordance with the IUCN guidelines, research is disappeared in today’s over-cultivated landscape. mandatory for category I wilderness areas. However, it may not disturb the natural habitats and communities of the nature reserve. Research in the Dürrenstein The Dürrenstein Wilderness Area Wilderness Area (DWA) focuses on providing invento- (DWA) ries of flora and fauna, on interdisciplinary monitoring The Dürrenstein Wilderness Area (DWA) was as well as on ecological disturbances and process dynamics.
    [Show full text]
  • The Elusive Mud Snail, Omphiscola Glabra
    09/04/2013 The elusive mud snail, Omphiscola glabra Dr Maria Long John Brophy MSc With assistance from Dr Roy Anderson Description : • Tall-spired • Dull brown in colour • Aperture (mouth) small – only ⅓ height of shell • Slight barrelling – lower whorls Ian Killeen (2008) almost cylindrical • Whorls moderately convex, with fairly shallow sutures • Surface almost matt, with very fine striae H: 9-15(20)mm W: 3-6mm www.animalbase.org 1 09/04/2013 Habitats and Ecology: • Restricted to nutrient-poor, sometimes temporary, aquatic habitats in lowland areas • Often not of obvious conservation value, with few other animal or plant species e.g. ditches, marshes, small ponds (sometimes in woodland), seepages, etc. • Can burrow into soft mud Photos: Top - Baker, Paul. Action Plan for the Mud Snail (Macadam & Baker, 2005) Bottom - Killeen, Ian (2008) A survey to determine the present status of the mud snail Omphiscola glabra at sites in County Durham. Northumbrian Water. Most recent Irish sites: 2009: Spring-fed acid wetland, at bases of Menyanthes trifoliata (bog-bean) 1979: Drain at edge of arable field, in landscape consisting mainly of heath & forestry plantations 2 09/04/2013 Distribution : International: • Range extends along Atlantic coasts of Europe, from southern Scandinavia to southern Spain, and inland to Germany & Latvia (extinct in Poland, not in Russia) National: • Confirmed sites in Cork, Waterford & Wexford. • Unconfirmed/doubtful records from Roscommon, Clare and Cavan. NBN map, taken from: Killeen, Ian (2008) A survey to determine the present status of the mud snail Omphiscola glabra at sites in County Durham. Northumbrian Water. Confirmed Irish records : Pre-1900: • 1840; Cork; John Humphreys • 1886; Cork; W.H.
    [Show full text]
  • 2017 City of York Biodiversity Action Plan
    CITY OF YORK Local Biodiversity Action Plan 2017 City of York Local Biodiversity Action Plan - Executive Summary What is biodiversity and why is it important? Biodiversity is the variety of all species of plant and animal life on earth, and the places in which they live. Biodiversity has its own intrinsic value but is also provides us with a wide range of essential goods and services such as such as food, fresh water and clean air, natural flood and climate regulation and pollination of crops, but also less obvious services such as benefits to our health and wellbeing and providing a sense of place. We are experiencing global declines in biodiversity, and the goods and services which it provides are consistently undervalued. Efforts to protect and enhance biodiversity need to be significantly increased. The Biodiversity of the City of York The City of York area is a special place not only for its history, buildings and archaeology but also for its wildlife. York Minister is an 800 year old jewel in the historical crown of the city, but we also have our natural gems as well. York supports species and habitats which are of national, regional and local conservation importance including the endangered Tansy Beetle which until 2014 was known only to occur along stretches of the River Ouse around York and Selby; ancient flood meadows of which c.9-10% of the national resource occurs in York; populations of Otters and Water Voles on the River Ouse, River Foss and their tributaries; the country’s most northerly example of extensive lowland heath at Strensall Common; and internationally important populations of wetland birds in the Lower Derwent Valley.
    [Show full text]
  • Anisus Vorticulus (Troschel 1834) (Gastropoda: Planorbidae) in Northeast Germany
    JOURNAL OF CONCHOLOGY (2013), VOL.41, NO.3 389 SOME ECOLOGICAL PECULIARITIES OF ANISUS VORTICULUS (TROSCHEL 1834) (GASTROPODA: PLANORBIDAE) IN NORTHEAST GERMANY MICHAEL L. ZETTLER Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, D-18119 Rostock, Germany Abstract During the EU Habitats Directive monitoring between 2008 and 2010 the ecological requirements of the gastropod species Anisus vorticulus (Troschel 1834) were investigated in 24 different waterbodies of northeast Germany. 117 sampling units were analyzed quantitatively. 45 of these units contained living individuals of the target species in abundances between 4 and 616 individuals m-2. More than 25.300 living individuals of accompanying freshwater mollusc species and about 9.400 empty shells were counted and determined to the species level. Altogether 47 species were identified. The benefit of enhanced knowledge on the ecological requirements was gained due to the wide range and high number of sampled habitats with both obviously convenient and inconvenient living conditions for A. vorticulus. In northeast Germany the amphibian zones of sheltered mesotrophic lake shores, swampy (lime) fens and peat holes which are sun exposed and have populations of any Chara species belong to the optimal, continuously and densely colonized biotopes. The cluster analysis emphasized that A. vorticulus was associated with a typical species composition, which can be named as “Anisus-vorticulus-community”. In compliance with that both the frequency of combined occurrence of species and their similarity in relative abundance are important. The following species belong to the “Anisus-vorticulus-community” in northeast Germany: Pisidium obtusale, Pisidium milium, Pisidium pseudosphaerium, Bithynia leachii, Stagnicola palustris, Valvata cristata, Bathyomphalus contortus, Bithynia tentaculata, Anisus vortex, Hippeutis complanatus, Gyraulus crista, Physa fontinalis, Segmentina nitida and Anisus vorticulus.
    [Show full text]
  • Freshwater Snail Guide
    A Beginner’s Guide to Freshwater Snails of Central Scotland Freshwater snails are a diverse and fascinating group of molluscs found in ponds, lochs, canals, rivers and watery ditches all across the globe. This guide is a simple introduction to some of the most commonly encountered and easily identifiable freshwater snail species in Central Scotland. How do I look for freshwater snails? 1) Choose your spot: anywhere with water – your garden pond, a nearby river, canal or loch – is likely to have snails. 2) Grab a pond net (buy online or make your own by attaching a sieve to the end of an old broom or mop), a white tray or tub and a hand-lens or magnifier. 3) Fill the tray with water from your chosen habitat. Sweep the net around in the water, making sure to get among any vegetation (don’t go too near the bottom or you’ll get a net full of mud), empty your net into the water-filled tray and identify what you have found! Snail shell features Spire Whorls Some snail species have a hard plate called an ‘operculum’ Height which they Mouth (Aperture) use to seal the mouth of the shell when they are inside Height Pointed shell Flat shell Width Width Pond Snails (Lymnaeidae) Variable in size. Mouth always on right-hand side, shells usually long and pointed. Great Pond Snail Common Pond Snail Lymnaea stagnalis Radix balthica Largest pond snail. Common in ponds Fairly rounded and ’fat’. Common in weedy lakes, canals and sometimes slow river still waters. pools.
    [Show full text]
  • Draft Carpathian Red List of Forest Habitats
    CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 1 227.8.20147.8.2014 222:36:052:36:05 © Štátna ochrana prírody Slovenskej republiky, 2014 Editor: Ján Kadlečík Available from: Štátna ochrana prírody SR Tajovského 28B 974 01 Banská Bystrica Slovakia ISBN 978-80-89310-81-4 Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 2 115.9.20145.9.2014 223:10:123:10:12 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) of the Carpathian Mountains . 186 Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 Draft Carpathian Red List of Fish and Lamprey Species . 203 Draft Carpathian Red List of Threatened Amphibians (Lissamphibia) . 209 Draft Carpathian Red List of Threatened Reptiles (Reptilia) . 214 Draft Carpathian Red List of Birds (Aves). 217 Draft Carpathian Red List of Threatened Mammals (Mammalia) .
    [Show full text]
  • Speeding up the Snail's Pace Bird
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/93702 Please be advised that this information was generated on 2021-10-07 and may be subject to change. SPEEDING UP THE SNAIL’S PACE Bird-mediated dispersal of aquatic organisms Casper H.A. van Leeuwen Speeding up the snail’s pace Bird-mediated dispersal of aquatic organisms The work in this thesis was conducted at the Netherlands Institute of Ecology (NIOO-KNAW) and Radboud University Nijmegen, cooperating within the Centre for Wetland Ecology. This thesis should be cited as: Van Leeuwen, C.H.A. (2012) Speeding up the snail’s pace: bird-mediated dispersal of aquatic organisms. PhD thesis, Radboud University Nijmegen, Nijmegen, The Netherlands ISBN: 978-90-6464-566-2 Printed by Ponsen & Looijen, Ede, The Netherlands Speeding up the snail’s pace Bird-mediated dispersal of aquatic organisms PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op het gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het College van Decanen in het openbaar te verdedigen op woensdag 27 juni 2012 om 13.00 uur precies door Casper Hendrik Abram van Leeuwen geboren op 18 september 1983 te Odijk Promotoren: Prof. dr. Jan van Groenendael Prof. dr. Marcel Klaassen (Universiteit Utrecht) Copromotor: Dr. Gerard van der Velde Manuscriptcommissie: Prof. dr. Hans de Kroon Dr. Gerhard Cadée (Koninklijk NIOZ) Prof. dr. Edmund Gittenberger (Universiteit Leiden) Prof.
    [Show full text]
  • Mud Snail (Omphiscola Glabra)
    MUD SNAIL (OMPHISCOLA GLABRA) Coastal and Floodplain Grazing Marsh, Ponds Appearance Mud snails can grow up to 20mm in length and are dark grey in colour. Habitat Mud snails are typically found in soft, nutrient poor waters with few other aquatic animals or plants. These include freshwater marshes, small ditches, temporary pools or seepages that dry up or significantly diminish in summer. These water-bodies are challenging habitats, which in the past were regarded as inferior wildlife habitats and were typically converted into productive agricultural land or improved visually for landscape reasons. Occasionally this species is found in larger water bodies such as swampy drainage dykes and permanent ponds. This species is most often found on coastal and floodplain grazing marsh and ponds. Food The mud snail eats mainly diatoms, bacteria and other micro-organisms. They will often also eat aquatic plants. Quite quickly a new growth of micro-organisms appears that they are able to eat. Life Style When pools recede or dry out, mud snails will burrow into the exposed mud and become dormant or aestivate (usually around 1-6cm into the mud). The mud snail is never found where there are high diversity of other snail species. The mud snail (Lymnaea glabra) is a west European species of local distribution. In Britain it was formerly fairly widely distributed throughout the acidic lowland areas of England, Wales and Scotland as far as Perth. It is now rare, with the largest concentration of records coming from the southern part of the Vale of York. This species has become extinct over large parts of lowland England and shows continuing decline.
    [Show full text]
  • Buglife Ditches Report Vol1
    The ecological status of ditch systems An investigation into the current status of the aquatic invertebrate and plant communities of grazing marsh ditch systems in England and Wales Technical Report Volume 1 Summary of methods and major findings C.M. Drake N.F Stewart M.A. Palmer V.L. Kindemba September 2010 Buglife – The Invertebrate Conservation Trust 1 Little whirlpool ram’s-horn snail ( Anisus vorticulus ) © Roger Key This report should be cited as: Drake, C.M, Stewart, N.F., Palmer, M.A. & Kindemba, V. L. (2010) The ecological status of ditch systems: an investigation into the current status of the aquatic invertebrate and plant communities of grazing marsh ditch systems in England and Wales. Technical Report. Buglife – The Invertebrate Conservation Trust, Peterborough. ISBN: 1-904878-98-8 2 Contents Volume 1 Acknowledgements 5 Executive summary 6 1 Introduction 8 1.1 The national context 8 1.2 Previous relevant studies 8 1.3 The core project 9 1.4 Companion projects 10 2 Overview of methods 12 2.1 Site selection 12 2.2 Survey coverage 14 2.3 Field survey methods 17 2.4 Data storage 17 2.5 Classification and evaluation techniques 19 2.6 Repeat sampling of ditches in Somerset 19 2.7 Investigation of change over time 20 3 Botanical classification of ditches 21 3.1 Methods 21 3.2 Results 22 3.3 Explanatory environmental variables and vegetation characteristics 26 3.4 Comparison with previous ditch vegetation classifications 30 3.5 Affinities with the National Vegetation Classification 32 Botanical classification of ditches: key points
    [Show full text]