Properties of Sports Ranking Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction Predictive Vs. Earned Ranking Methods
An overview of some methods for ranking sports teams Soren P. Sorensen University of Tennessee Knoxville, TN 38996-1200 [email protected] Introduction The purpose of this report is to argue for an open system for ranking sports teams, to review the history of ranking systems, and to document a particular open method for ranking sports teams against each other. In order to do this extensive use of mathematics is used, which might make the text more difficult to read, but ensures the method is well documented and reproducible by others, who might want to use it or derive another ranking method from it. The report is, on the other hand, also more detailed than a ”typical” scientific paper and discusses details, which in a scientific paper intended for publication would be omitted. We will in this report focus on NCAA 1-A football, but the methods described here are very general and can be applied to most other sports with only minor modifications. Predictive vs. Earned Ranking Methods In general most ranking systems fall in one of the following two categories: predictive or earned rankings. The goal of an earned ranking is to rank the teams according to their past performance in the season in order to provide a method for selecting either a champ or a set of teams that should participate in a playoff (or bowl games). The goal of a predictive ranking method, on the other hand, is to provide the best possible prediction of the outcome of a future game between two teams. In an earned system objective and well publicized criteria should be used to rank the teams, like who won or the score difference or a combination of both. -
Chapter Two Massey’S Method
Chapter Two Massey’s Method The Bowl Championship Series (BCS) is a rating system for NCAA college football that wasdesignedtodeterminewhichteamsareinvitedtoplayinwhichbowlgames.The BCS has become famous, and perhaps notorious, for the ratings it generates for each team in the NCAA. These ratings are assembled from two sources, humans and computers. Human input comes from the opinions of coaches and media. Computer input comes from six computer and mathematical models—details are given in the aside on page 17. The BCS ratings for the 2001 and 2003 seasons are known as particularly controversial among sports fans and analysts. The flaws in the BCS selection system as opposed to a tournament playoff are familiar to most, including the President of the United States—read the aside on page 19. Initial Massey Rating Method In 1997, Kenneth Massey, then an undergraduate at Bluefield College, created a method for ranking college football teams. He wrote about this method, which uses the mathematical theory of least squares, as his honors thesis [52]. In this book we refer to this as the Massey method, despite the fact that there are actually several other methods attributed to Ken Massey. Massey has since become a mathematics professor at Carson-Newman College and today continues to refine his sports ranking models. Professor Massey has created various rat- ing methods, one of which is used by the Bowl Championship Series K. Massey (or BCS) system to select NCAA football bowl matchups—see the aside on page 17. The Colley method, described in the next chapter, is also one of the six computer rating sys- tems used by the BCS. -
Quantifying the Influence of Deviations in Past NFL Standings on the Present
Can Losing Mean Winning in the NFL? Quantifying the Influence of Deviations in Past NFL Standings on the Present The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation MacPhee, William. 2020. Can Losing Mean Winning in the NFL? Quantifying the Influence of Deviations in Past NFL Standings on the Present. Bachelor's thesis, Harvard College. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364661 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Can Losing Mean Winning in the NFL? Quantifying the Influence of Deviations in Past NFL Standings on the Present A thesis presented by William MacPhee to Applied Mathematics in partial fulfillment of the honors requirements for the degree of Bachelor of Arts Harvard College Cambridge, Massachusetts November 15, 2019 Abstract Although plenty of research has studied competitiveness and re-distribution in professional sports leagues from a correlational perspective, the literature fails to provide evidence arguing causal mecha- nisms. This thesis aims to isolate these causal mechanisms within the National Football League (NFL) for four treatments in past seasons: win total, playoff level reached, playoff seed attained, and endowment obtained for the upcoming player selection draft. Causal inference is made possible due to employment of instrumental variables relating to random components of wins (both in the regular season and in the postseason) and the differential impact of tiebreaking metrics on teams in certain ties and teams not in such ties. -
Open Evan Bittner Thesis.Pdf
THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF STATISTICS PREDICTING MAJOR LEAGUE BASEBALL PLAYOFF PROBABILITIES USING LOGISTIC REGRESSION EVAN J. BITTNER FALL 2015 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Statistics with honors in Statistics Reviewed and approved* by the following: Andrew Wiesner Lecturer of Statistics Thesis Supervisor Murali Haran Associate Professor of Statistics Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT Major League Baseball teams are constantly assessing whether or not they think their teams will make the playoffs. Many sources publish playoff probabilities or odds throughout the season using advanced statistical methods. These methods are somewhat secretive and typically advanced and difficult to understand. The goal of this work is to determine a way to calculate playoff probabilities midseason that can easily be understood and applied. The goal is to develop a method and compare its predictive accuracy to the current methods published by statistical baseball sources such as Baseball Prospectus and Fangraphs. ii TABLE OF CONTENTS List of Figures .............................................................................................................. iii List of Tables ............................................................................................................... iv Acknowledgements ..................................................................................................... -
Riding a Probabilistic Support Vector Machine to the Stanley Cup
J. Quant. Anal. Sports 2015; 11(4): 205–218 Simon Demers* Riding a probabilistic support vector machine to the Stanley Cup DOI 10.1515/jqas-2014-0093 elimination rounds. Although predicting post-season playoff outcomes and identifying factors that increase Abstract: The predictive performance of various team the likelihood of playoff success are central objectives of metrics is compared in the context of 105 best-of-seven sports analytics, few research results have been published national hockey league (NHL) playoff series that took place on team performance during NHL playoff series. This has between 2008 and 2014 inclusively. This analysis provides left an important knowledge gap, especially in the post- renewed support for traditional box score statistics such lockout, new-rules era of the NHL. This knowledge gap is as goal differential, especially in the form of Pythagorean especially deplorable because playoff success is pivotal expectations. A parsimonious relevance vector machine for fans, team members and team owners alike, often both (RVM) learning approach is compared with the more com- emotionally and economically (Vrooman 2012). A better mon support vector machine (SVM) algorithm. Despite the understanding of playoff success has the potential to potential of the RVM approach, the SVM algorithm proved deliver new insights for researchers studying sports eco- to be superior in the context of hockey playoffs. The proba- nomics, competitive balance, home ice advantage, home- bilistic SVM results are used to derive playoff performance away playoff series sequencing, clutch performances and expectations for NHL teams and identify playoff under- player talent. achievers and over-achievers. The results suggest that the In the NHL, the Stanley Cup is granted to the winner Arizona Coyotes and the Carolina Hurricanes can both of the championship after four playoff rounds, each con- be considered Round 2 over-achievers while the Nash- sisting of a best-of-seven series. -
Why the 2020 LA Dodgers Are the Greatest Team of All Time
Floersch UWL Journal of Undergraduate Research XXIV (2021) Why the 2020 Dodgers Are the Greatest Team of All Time, at least statistically Sean Floersch Faculty Mentor: Chad Vidden, Mathematics and Statistics ABSTRACT This paper explores the use of sports analytics in an attempt to quantify the strength of Major League Baseball teams from 1920-2020 and then find which team was the greatest team of all time. Through the use of basic baseball statistics, ratios were personally created that demonstrate the strength of a baseball team on offense and defense. To account for slight year to year differences in the ratios, standard deviations to the yearly mean are used and the personally created Flo Strength metric is used with the standard deviations. This allows the ratios to be compared across all seasons, with varying rules, number of teams, and number of games. These ratios and Flo Strength metric go through statistical testing to confirm that the ratios are indeed standardized across seasons. This is especially important when comparing the strange Covid-19 2020 baseball season. After quantifying all the team strengths, it is argued that the 2020 Los Angeles Dodgers are the greatest team of all time. INTRODUCTION The 2020 Covid MLB Season In a year like no other, with a pandemic locking down society, racial inequalities becoming the forefront of the news, and division across the country mounting, sports were turned to for a sense of normalcy. Slowly, sports returned, but in a way never seen before. The NBA returned, isolated in a bubble. Strict protocol was put in place in the NHL and MLS in order to ensure player and personnel safety. -
Team Payroll Versus Performance in Professional Sports: Is Increased Spending Associated with Greater Success?
Team Payroll Versus Performance in Professional Sports: Is Increased Spending Associated with Greater Success? Grant Shorin Professor Peter S. Arcidiacono, Faculty Advisor Professor Kent P. Kimbrough, Seminar Advisor Duke University Durham, North Carolina 2017 Grant graduated with High Distinction in Economics and a minor in Statistical Science in May 2017. Following graduation, he will be working in San Francisco as an Analyst at Altman Vilandrie & Company, a strategy consulting group that focuses on the telecom, media, and technology sectors. He can be contacted at [email protected]. Acknowledgements I would like to thank my thesis advisor, Peter Arcidiacono, for his valuable guidance. I would also like to acknowledge my honors seminar instructor, Kent Kimbrough, for his continued support and feedback. Lastly, I would like to recognize my honors seminar classmates for their helpful comments throughout the year. 2 Abstract Professional sports are a billion-dollar industry, with player salaries accounting for the largest expenditure. Comparing results between the four major North American leagues (MLB, NBA, NHL, and NFL) and examining data from 1995 through 2015, this paper seeks to answer the following question: do teams that have higher payrolls achieve greater success, as measured by their regular season, postseason, and financial performance? Multiple data visualizations highlight unique relationships across the three dimensions and between each sport, while subsequent empirical analysis supports these findings. After standardizing payroll values and using a fixed effects model to control for team-specific factors, this paper finds that higher payroll spending is associated with an increase in regular season winning percentage in all sports (but is less meaningful in the NFL), a substantial rise in the likelihood of winning the championship in the NBA and NHL, and a lower operating income in all sports. -
Using Bayesian Statistics to Rank Sports Teams (Or, My Replacement for the BCS)
Ranking Systems The Bradley-Terry Model The Bayesian Approach Using Bayesian statistics to rank sports teams (or, my replacement for the BCS) John T. Whelan [email protected] Center for Computational Relativity & Gravitation & School of Mathematical Sciences Rochester Institute of Technology π-RIT Presentation 2010 October 8 1/38 John T. Whelan [email protected] Using Bayesian statistics to rank sports teams Ranking Systems The Bradley-Terry Model The Bayesian Approach Outline 1 Ranking Systems 2 The Bradley-Terry Model 3 The Bayesian Approach 2/38 John T. Whelan [email protected] Using Bayesian statistics to rank sports teams Ranking Systems The Bradley-Terry Model The Bayesian Approach Outline 1 Ranking Systems 2 The Bradley-Terry Model 3 The Bayesian Approach 2/38 John T. Whelan [email protected] Using Bayesian statistics to rank sports teams Ranking Systems The Bradley-Terry Model The Bayesian Approach The Problem: Who Are The Champions? The games have been played; crown the champion (or seed the playoffs) If the schedule was balanced, it’s easy: pick the team with the best record If schedule strengths differ, record doesn’t tell all e.g., college sports (seeding NCAA tourneys) 3/38 John T. Whelan [email protected] Using Bayesian statistics to rank sports teams Ranking Systems The Bradley-Terry Model The Bayesian Approach Evaluating an Unbalanced Schedule Most NCAA sports (basketball, hockey, lacrosse, . ) have a selection committee That committee uses or follows selection criteria (Ratings Percentage Index, strength of schedule, common opponents, quality wins, . ) Football (Bowl Subdivision) has no NCAA tournament; Bowl Championship Series “seeded” by BCS rankings All involve some subjective judgement (committee or polls) 4/38 John T. -
Sport Analytics
SPORT ANALYTICS Dr. Jirka Poropudas, Director of Analytics, SportIQ [email protected] Outline 1. Overview of sport analytics • Brief introduction through examples 2. Team performance evaluation • Ranking and rating teams • Estimation of winning probabilities 3. Assignment: ”Optimal betting portfolio for Liiga playoffs” • Poisson regression for team ratings • Estimation of winning probabilities • Simulation of the playoff bracket • Optimal betting portfolio 11.3.2019 1. Overview of sport analytics 11.3.2019 What is sport analytics? B. Alamar and V. Mehrotra (Analytics Magazine, Sep./Oct. 2011): “The management of structured historical data, the application of predictive analytic models that utilize that data, and the use of information systems to inform decision makers and enable them to help their organizations in gaining a competitive advantage on the field of play.” 11.3.2019 Applications of sport analytics • Coaches • Tactics, training, scouting, and planning • General managers and front offices • Player evaluation and team building • Television, other broadcasters, and news media • Entertainment, better content, storytelling, and visualizations • Bookmakers and bettors • Betting odds and point spreads 11.3.2019 Data sources • Official summary statistics • Aggregated totals from game events • Official play-by-play statistics • Record of game events as they take place • Manual tracking and video analytics • More detailed team-specific events • Labor intensive approach • Data consistency? • Automated tracking systems • Expensive -
The Ranking of Football Teams Using Concepts from the Analytic Hierarchy Process
University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2009 The ranking of football teams using concepts from the analytic hierarchy process. Yepeng Sun 1976- University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Recommended Citation Sun, Yepeng 1976-, "The ranking of football teams using concepts from the analytic hierarchy process." (2009). Electronic Theses and Dissertations. Paper 1408. https://doi.org/10.18297/etd/1408 This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. THE RANKING OF FOOTBALL TEAMS USING CONCEPTS FROM THE ANALYTIC HIERARCHY PROCESS BY Yepeng Sun Speed Engineering School, 2007 A Thesis Submitted to the Faculty of the Graduate School of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Master of Engineering Department of Industrial Engineering University of Louisville Louisville, Kentucky December 2009 THE RANKING OF FOOTBALL TEAMS USING CONCEPTS FROM THE ANALYTIC HIERARCHY PROCESS By Yepeng Sun Speed Engineering School, 2007 A Thesis Approved on November 3, 2009 By the following Thesis Committee x Thesis Director x x ii ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Gerald Evans, for his guidance and patience. I attribute the level of my Masters degree to his encouragement and effort and without him this thesis, too, would not have been completed or written. -
How to Win Your Ncaa Tournament Pool
HOW TO WIN YOUR NCAA TOURNAMENT POOL All Rights Reserved Copyright © 2015 The Power Rank, Inc. All Rights Reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher, addressed “Attention: Permissions Coordinator,” at the address below. The Power Rank, Inc. 2390 Adare Road Ann Arbor, MI 48104 Legal Disclaimer: Tips, predictions, and strategy published in this book are only the opinions of the author and for entertainment purposes only. They are not defnite predictions or guaranteed strategies. The material contained herein is intended to inform and educate the reader and in no way represents an inducement to gamble legally or illegally. Betting is illegal in some jurisdictions. It is the sole responsibility of the reader to act in accordance with their local laws. Printed in the United States of America First Printing, 2015 HOW TO WIN YOUR NCAA TOURNAMENT POOL Can analytics predict the tourney? You want to win your March Madness pool. Every March, your friend sends that email about the pool for the NCAA men's basketball tournament. Winning the pool offers not only a significant pot of money but also bragging rights for a year. However, picking a bracket is challenging. Which 12 seed might pull off the upset over a 5 seed this year? Is there a 15 seed that will terminate a 2 seed in the round of 64? (Later, I'll discuss how neither of these matter much for winning your pool.) Unless you cover college basketball for a living, you don't have the time to know much about all 60-some college basketball teams that make the tourney. -
A Simple and Flexible Rating Method for Predicting Success in the NCAA Basketball Tournament∗
A Simple and Flexible Rating Method for Predicting Success in the NCAA Basketball Tournament∗ Brady T. West Abstract This paper first presents a brief review of potential rating tools and methods for predicting suc- cess in the NCAA basketball tournament, including those methods (such as the Ratings Percentage Index, or RPI) that receive a great deal of weight in selecting and seeding teams for the tournament. The paper then proposes a simple and flexible rating method based on ordinal logistic regression and expectation (the OLRE method) that is designed to predict success for those teams selected to participate in the NCAA tournament. A simulation based on the parametric Bradley-Terry model for paired comparisons is used to demonstrate the ability of the computationally simple OLRE method to predict success in the tournament, using actual NCAA tournament data. Given that the proposed method can incorporate several different predictors of success in the NCAA tournament when calculating a rating, and has better predictive power than a model-based approach, it should be strongly considered as an alternative to other rating methods currently used to assign seeds and regions to the teams selected to play in the tournament. KEYWORDS: quantitative reasoning, ratings, sports statistics, NCAA basketball ∗The author would like to thank Fred L. Bookstein for the original motivation behind this paper, his colleagues at the Center for Statistical Consultation and Research for their helpful thoughts and suggestions, and freelance writer Dana Mackenzie and four anonymous reviewers for thoughtful and constructive feedback on earlier drafts. West: Predicting Success in the NCAA Basketball Tournament 1.