30.10 News Feature Sleep MH

Total Page:16

File Type:pdf, Size:1020Kb

30.10 News Feature Sleep MH J. FEINGERSH/CORBIS Restless nights, listless days More and more people’s working and social lives are blighted by skewed sleep patterns. Is it time for the medical mainstream to take notice of what neuroscientists are learning about the body clock? Alison Abbott reports. s thousands of researchers from Jetlag is just one example of a disruption rhythms. What’s more, the basic tempo of Europe and Asia join their American to circadian rhythms.Your body clock can be the cycle is fixed — it can’t get much faster or Acolleagues in New Orleans next week upset by disease, seasonal changes in day slower — even in the absence of external cues for the annual Society for Neuroscience length,and even ageing — causing sleep pat- that signal the time of day. conference, much of the café talk will terns to shift from the norm.You can also run The workings of circadian clocks are revolve around jetlag and the merits of into problems if you try to ignore your bio- gradually being revealed, right down to their melatonin. Does taking this hormone really logical rhythms, for example when working molecular nuts and bolts. Central to the help us to adjust more quickly to a new night shifts.But circadian biologists are find- timekeeping mechanism are the SCN, which time zone? ing that broken body clocks can, in some comprise two clusters of 50,000 neurons,one At least neuroscientists should be able to cases, be mended. They are now calling on on each side of the brain.A dozen or so time- get an informed opinion. Their discipline governments to recognize the societal keeping genes — with names such as Period, includes specialists who study the body’s importance of their work,and to provide the Clock and Crytochrome — have been identi- daily, or circadian, rhythms. And the good funding needed to move the field from its fied in the human SCN over the past few news, from a recent analysis of the few stud- current fringe status into the mainstream of years. Together, they orchestrate the daily ies that have investigated the effects of mela- medicine. cycle of sleep and wakefulness. The genes are tonin, is that it does help to reset weary trav- When your biological clock is running periodically switched on and off by complex ellers’body clocks1. The hormone is secreted smoothly,body temperature and the levels of feedback loops that are influenced by our from the brain’s pineal gland during dark- various hormones,such as cortisol,peak and exposure to light, which the SCN seem to ness, but levels fall when day breaks. It influ- trough in fixed cycles, synchronized to the sense through specialized neurons called ences the body’s ‘master clock’ — the onset of night and day (see diagram, oppo- melanopsin cells in the eye’s retina.These are suprachiasmatic nuclei (SCN) — located in site). Body temperature reaches a maximum sensitive to blue light,but have nothing to do a region of the brain called the hypothala- in the early evening and then falls, generally with vision2. mus. So by taking extra melatonin at the dropping by a full degree centigrade by the Circadian biologists are now beginning desired bedtime, you can retrain your clock end of a night’s sleep. Many other physiolo- to understand what can go wrong with this more quickly to match the local time zone. gical functions show similarly resilient system, and are figuring out how to put it 896 © 2003 Nature Publishing Group NATURE | VOL 425 | 30 OCTOBER 2003 | www.nature.com/nature news feature thing, but coping with the loss of active neu- rons from the SCN, as occurs in Alzheimer’s disease for example6, is more challenging. The internal clock of an Alzheimer’s patient T. SPAGNA/SPL may be out of synch with the actual cycle of day and night by several hours.“Normal old people, and old people with other types of dementia,hit their lowest body temperatures between 3 and 5 a.m.,”says Harper, who has compared the circadian rhythms of patients with different dementias7. “But those with Alzheimer’s frequently occur much later — even as late as noon.” Night nursing So Alzheimer’s sufferers tend to be active when those who are caring for them want to sleep. “In fact, most Alzheimer’s patients go into nursing homes not because of their memory disorders, but because families can’t cope when they wander around at night,”says Eus Van Someren of the Nether- lands Institute of Brain Research in Amster- dam. He is on the verge of completing the Tired and troubled: sleep researchers hope that better knowledge of the body clock’s workings — and first study to follow the progress of of how to influence its rhythm — will help those struggling with drowsy days and never-ending nights. Alzheimer’s patients exposed to different light conditions. right. Studies of the newly identified clock 6 a.m. and ‘owls’ who never retire before Earlier studies8 at the Amsterdam insti- genes are already helping to reveal the causes 1 a.m. will remain as such, whatever the pres- tute showed that exposing elderly rats — of diseases that result in extremely unusual sure from parents, spouses or employers4. suffering from loss of active SCN neurons patterns of sleep and wakefulness (see ‘Seri- As well as being up with the larks, elderly and disturbed sleep patterns — to bright ously out of synch’,overleaf).And experts are people produce less melatonin overall, and light restored both healthier sleep patterns now experimenting with light or melatonin therefore tend to have more disturbed sleep. and the number of active SCN neurons. as a fix for various circadian disruptions.For But a team led by Kazuo Mishima, a sleep “The neurons become inactive but don’t instance, Charles Czeisler, a sleep researcher researcher at the National Center of Neurol- disappear, and at least in the rat they can be at the Brigham and Women’s Hospital in ogy and Psychiatry in Ichikawa, Japan, has reactivated,” says Van Someren. “So we Boston, is testing blue light3 for resetting shown that exposure to bright light in the wondered if this ‘use-it-or-lose-it’ phen- melatonin rhythms. middle of the day can increase night-time omenon could happen also in old and melatonin production and promote deep demented people.” Cycle paths sleep for many old people5. “In general, the In 1999, Van Someren and his colleagues Although everyone’s rhythms operate on a more light old people have,the stronger their began their long-term study of how light daily cycle, our clocks can be set very differ- daily rhythms will be — and so their sleep conditions affect Alzheimer’s patients. It has ently, causing different people to be most patterns improve,”says David Harper, a spe- involved 190 subjects in 12 Dutch residential active and alert at different times of the day. cialist in geriatric psychiatry at the McLean homes installed with light boxes in the In general, we drift towards ‘eveningness’ Hospital in Belmont, Massachusetts. “It is ceilings to mimic skylights. In half of the during adolescence, and towards ‘morning- unfortunate that the old often live in poorly homes these remained bright during the day, ness’ in old age. But our basic personal lit homes and don’t get out much.” whereas in control homes the lighting was preferences are resilient: ‘larks’ who wake at Adapting to normal signs of ageing is one kept low. The researchers measured the strength of the patients’ biological rhythms every six months, and monitored their sleep sleep over a two-week period using an activity Suprachiasmatic Hypothalamus nucleus monitor strapped to the wrist. Van Someren is still analysing the data generated during the first three-and-a-half years of the study, but he reported his early Retina findings to the 1st World Congress of Chronobiology in Sapporo, Japan, in Sep- Daily variation tember. Bright lighting during the day Light shifted circadian rhythms back towards a normal pattern, improving sleep patterns 0 4 8 12 16 20 Pineal and mood. It also seemed to slow the decline gland Time of day (h) in the patients’cognitive capacity. Schizophrenics are similarly often active Optic Melatonin nerve at night. “Psychiatrists have tended to dis- Cortisol miss this observation with the notion that Temperature Signals ‘they can’t hold down a job, so of course to the body they will be staying up all night’,”says Russell NATURE | VOL 425 | 30 OCTOBER 2003 | www.nature.com/nature © 2003 Nature Publishing Group 897 news feature Foster, a circadian biologist at Imperial College, London. Foster and his colleague Katharina Wulff are now trying to find out whether schizophrenics have disrupted cir- cadian rhythms. The eight individuals they have so far studied tended towards extreme eveningness, and the researchers are now K. UNIV. SNIBBE/HARVARD applying to the UK Medical Research Coun- cil’s new Brain Sciences Initiative for funding to study the effect of treating schizophrenics with light. “It will be interesting to see if consolidating sleep–wake profiles helps to control schizophrenic episodes,”says Foster. Light also helps to relieve the symptoms of depression that afflict patients with Out of the blue: doses of light therapy could boost production of hormones that set the body clock. seasonal affective disorder. Also called the ‘winter blues’,the problem is clearly linked to to daylight, particularly in summer, before workers, will be completed by next spring. disrupted circadian rhythms as the nights and after their shifts. Small wonder, then, “Volkswagen is in the vanguard, but other draw in9.
Recommended publications
  • Intrinsic Period and Light Intensity Determine the Phase Relationship Between Melatonin and Sleep in Humans
    Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. Kenneth Wright, Claude Gronfier, Jeanne Duffy, Charles Czeisler To cite this version: Kenneth Wright, Claude Gronfier, Jeanne Duffy, Charles Czeisler. Intrinsic period and lightin- tensity determine the phase relationship between melatonin and sleep in humans.: Phase Angle of Entrainment in Humans. Journal of Biological Rhythms, SAGE Publications, 2005, 20 (2), pp.168-77. 10.1177/0748730404274265. inserm-00394462 HAL Id: inserm-00394462 https://www.hal.inserm.fr/inserm-00394462 Submitted on 11 Jun 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Intrinsic circadian period and strength of the circadian synchronizer determines the phase relationship between melatonin onset, habitual sleep time and the light-dark cycle in humans Kenneth P. Wright Jr. *,†,1 , Claude Gronfier* ,2 , Jeanne F. Duffy* and Charles A. Czeisler* *Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 †Sleep and Chronobiology Laboratory, Department of Integrative Physiology, Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0354 1. To whom correspondence and proofs should be addressed: Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO 80309-0354; phone 303-735-6409; fax 303-492-4009; e-mail: [email protected] 2.
    [Show full text]
  • Sleep Is for Suckers”
    9/14/2018 SLEEP YOUR WAY TO OPTIMAL WELLNESS Kasia Hrecka, PhD Functional Medicine Coach www.nourishup.com April 1986 Chernobyl nuclear plant explosion March 1989 Exxon Valdez tanker Spills 50 million gallons of crude oil January 1986 The Challenger Explosion „I’ll sleep when I’m dead” „Sleep is a waste of time” „I don’t have time to sleep” „Sleep is for suckers” etc. 1 9/14/2018 Protect the Asset Sleep makes us more productive, not less Violinists study by K. Andres Ericsson*: • the best violinists spent more time practicing • Second most important factor differentiating good violinists from the best was sleep – Best violinists slept on average 8.6h in every 24h period and + 2.8h napping average week time. * Ericcson et al., 1993 “The role of deliberate practice in the acquisition of expert performance” Psych. Review 100, no. 3 2 9/14/2018 Sleep depravation undermines high performance* • Sleep deficit is like drinking too much alcohol: – “Pulling an all-nighter or having a week of sleeping just four hours a night actually “induces an impairment equivalent to a blood alcohol level of 0.1%. Think about this: we would never say, ’This person is a great worker! He’s drunk all the time!’ yet we continue to celebrate people who sacrifice sleep for work” * Charles A. Czeisler, “Sleep deficit: Preformance killer” Harvard Business Review Oct. 2006 Sleep is about the brain: Full night’s sleep may increase brain power and enhance our problem-solving ability* • 100 volunteers solving a puzzle with an unconventional twist – they had to find a “hidden
    [Show full text]
  • Cajochen, Phd Centre for Chronobiology Psychiatric Hospital of the University of Basel, Switzerland
    Beyond our eyes: the non-visual impact of light Christian Cajochen, PhD Centre for Chronobiology Psychiatric Hospital of the University of Basel, Switzerland Workshop Intelligent Efficient Human Centric Lighting Muttenz/Basel 12.. December 2016 Thomas Edison was maybe wrong ! Light is the most important Zeitgeber ! Buttgereit, Smolen, Coogan, Cajochen, Nat Rev Rheumatol, 2015 Light and human circadian rhythms Melatonin as the best circadian marker in humans Induction of a Phase Delay in the Human Circadian Melatonin Rhythm by Light (10’000 lux for 6.5 h) Midpoint Midpoint 4:45 8:21 400 Light /L) 300 pMol 200 100 Plasma Melatonin ( Melatonin Plasma 0 12 24 12 24 12 24 12 24 12 Time of Day Sleep period Khalsa et al., J Physiol (London) 2003 Light and circadian phase Phase-Response Curve 4 3 2 (h) 1 shift 0 -1 Phase -2 -3 6.7 hours 10’000 lux -4 polychromatic whiteRetina light -18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 Initial Phase (time relative to DLMO=0) Khalsa, et al., J Physiol (London) 2003 «Light impacts on our circadian rhythms more powerfully than any drug» Charles Czeisler «Casting light on sleep deficiency» Nature, 2013 Suppression of melatonin in a totally blind person with bright light Sighted Person 300 200 Plasma Melatonin 100 (pmol/liter) 37.5 37.0 Core Body Temperature 36.5 (°C) 36.0 12 18 24 6 12 18 24 6 12 Time of Day (h) Blind Person 300 200 Plasma Melatonin 100 (pmol/liter) 37.5 37.0 Core Body Temperature (°C) 36.5 36.0 12 18 24 6 12 18 24 6 12 Time of Day (h) Czeisler et al., New Engl Med 1995 Light is more than vision non-visual / non-image forming light effects Light can be «seen» without conscious vision «Forced choice» test in a totally blind person 100 * 80 60 40 Correct Answer (%) Answer Correct 20 0 420 460 481 500 506 515 540 560 580 Wavelength (nm) Nach Zaidi et al., Curr Biol, 2007 Non-classical Photoreceptor intrinsic photosensitive retinal ganglion SCN cells (iPRGs, Melanopsin) (circadian Pacemaker) Eye A dual sensory organ Rods Retina Cones Hattar et al.
    [Show full text]
  • Czeisler 2013
    SLEEP OUTLOOK PERSPECTIVE Casting light on sleep deficiency The use of electric lights at night is disrupting the sleep of more and more people, says Charles Czeisler. here are many reasons why people get insufficient sleep in our apnoea, which disrupts sleep (see ‘Heavy sleepers’, page S8). Children 24/7 society, from early starts at work or school, or long com- become hyperactive rather than sleepy when they don’t get enough mutes, to caffeine-rich food and drink. But the precipitating fac- sleep, and have difficulty focusing attention, so sleep deficiency may Ttor is an often unappreciated, technological breakthrough: the electric be mistaken for attention-deficit hyperactivity disorder (ADHD), an light. Without it, few people would use caffeine to stay awake at night. increasingly common condition now diagnosed in 19% of US boys of And light affects our circadian rhythms more powerfully than any drug. high-school age. Some 40% of people in the United States report that Just as the ear has two functions (hearing and balance), so too does their sleep is often insufficient, with 25% reporting difficulty concen- the eye. First, rods and cones enable sight; and second, intrinsically trating owing to fatigue. The WHO has even added night-shift work photosensitive retinal ganglion cells (ipRGCs) containing the photo- to its list of known and probable carcinogens. And the death toll from pigment melanopsin enable pupillary light responses, photic resetting driving while tired is second only to that caused by drink driving. of the circadian clock, and other sightless visual responses. Artificial The number of people with sleep deficiency seems destined to rise.
    [Show full text]
  • Circadian Phase Sleep and Mood Disorders (PDF)
    129 CIRCADIAN PHASE SLEEP AND MOOD DISORDERS ALFRED J. LEWY CIRCADIAN ANATOMY AND PHYSIOLOGY SCN Efferent Pathways Anatomy Not much is known about how the SCN entrains overt circadian rhythms. We know that the SCN is the master The Suprachiasmatic Nucleus: Locus of the pacemaker, but regarding its regulation of the rest/activity Biological Clock cycle, core body temperature rhythm and cortisol rhythm, Much is known about the neuroanatomic connections of among others, it is not clear if there is a humoral factor or the circadian system. In vertebrates, the locus of the biologi- neural connection that transmits the SCN’s efferent signal; cal clock (the endogenous circadian pacemaker, or ECP) however, a great deal is known about the efferent neural pathway between the SCN and pineal gland. that drives all circadian rhythms is in the hypothalamus, specifically, the suprachiasmatic nucleus (SCN)(1,2).This paired structure derives its name because it lies just above The Pineal Gland the optic chiasm. It contains about 10,000 neurons. The In mammals, the pineal gland is located in the center of molecular mechanisms of the SCN are an active area of the brain; however, it lies outside the blood–brain barrier. research. There is also a great deal of interest in clock genes Postganglionic sympathetic nerves (called the nervi conarii) and clock components of cells in general, not just in the from the superior cervical ganglion innervate the pineal (4). SCN. The journal Science designated clock genes as the The preganglionic neurons originate in the spinal cord, spe- second most important breakthrough for the recent year; cifically in the thoracic intermediolateral column.
    [Show full text]
  • Astronauts Need Their Rest Too STS–107: Space Research And
    National Aeronautics and Space Administration STS–107: Space Research and You Astronauts Need Their Rest Too Sleep-Wake Actigraphy and Light Exposure During Space Flight The success and effectiveness of human space flight depends on astronauts’ ability to maintain a high level of cognitive performance and vigilance. This alert state ensures the proper operation of sophisticated instrumentation. An important way for humans to remedy fatigue and maintain alert- ness is to get plenty of rest. Astronauts, however, commonly experience difficulty sleeping while in space. During flight, they may also experience disruption of the body’s circadian rhythm — the natural phases the body goes through every day as we oscillate between states of high activity dur- Scott Altman, mission commander for STS–109, sleeps on ing the waking day and recuperation, rest, and the flight deck of the Space Shuttle Columbia. repair during nighttime sleep. Both of these factors are The results of this research could lead to the associated with impairment of alertness and per- development of a new treatment for sleep distur- formance, which could have important consequences bances, enabling crewmembers to avoid the during a mission in space. decrements in alertness and performance due to The human body was designed to sleep at sleep deprivation. What we learn about sleep in night and be alert and active during the day. We space informs treatment for earthbound popula- receive these cues from the time of day or amount tions, such as the elderly and insomniacs, who of light, such as the rising or setting of the sun. experience frequent sleep disturbances or altered However, in the environment of the Space Shuttle sleep patterns.
    [Show full text]
  • Should Sleep-Deprived Surgeons Be Prohibited from Operating Without Patients’ Consent?
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptAnn Thorac Author Manuscript Surg. Author Author Manuscript manuscript; available in PMC 2015 July 09. Published in final edited form as: Ann Thorac Surg. 2013 February ; 95(2): 757–766. doi:10.1016/j.athoracsur.2012.11.052. Should Sleep-Deprived Surgeons Be Prohibited from Operating Without Patients’ Consent? Charles A. Czeisler, PhD, MD1, Carlos A. Pellegrini, MD2, and Robert M. Sade, MD3 1Baldino Professor of Sleep Medicine, Harvard Medical School; Chief of the Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital; and Director of the Division of Sleep Medicine, Harvard Medical School, Boston, MA 2Henry N. Harkins Professor and Chair, Department of Surgery, University of Washington, Seattle, WA 3 Professor of Surgery, Division of Cardiothoracic Surgery; Director of the Institute of Human Values in Health Care; and Director of the Clinical Research Ethics Core of the South Carolina Address for correspondence: Robert M. Sade, M.D. Medical University of South Carolina 25 Courtenay Drive Suite 7028, MSC 295 Charleston, SC 29425-2270 [email protected]; www.values.musc.edu 843 792 5278 (office); 843 792 3858 (fax); 843 345 0480 (cell). Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
    [Show full text]
  • The Effects of the Digital Age on Our Sleep by Tessa Menzies
    Menzies 1 Tesssa Menzies Instructor’s Name ENGL 1013 Date The Effects of the Digital Age on Our Sleep According to Thomas Edison, “Sleep is a waste of time, a heritage of our cave days” (qtd. in Ransom 4). Edison, an inventor who started the revolution of artificial lighting, implied that light would have a consequential effect on sleep because the integration of artificial lighting gave people an incentive to not go to bed when the sun went down. According to Dr. Charles Czeisler, a professor of sleep medicine at Harvard Medical School, “turning on a light . [is like] inadvertently taking a drug that affects how we will sleep” (Ekrich 176). If this is what is said about light from light bulbs, how deeply does digital technology impact us? The use of digital technology affects sleep through the light it projects and interaction it requires. A fundamental way that digital technology affects sleep is through the light projected from the screens of digital devices. Studies from Harvard University and the Brigham and Women’s Hospital have concluded that “light emitted by [these]devices reset[s] the body’s circadian clock, which synchronizes the daily rhythm of sleep to daylight” (“Research” 8). The human brain uses the exposure to light to know when it is time for sleep and will then release certain hormones. Unfortunately, our brains react to the light from digital screens in the same way that they react to sunlight. Dr. Czeisler explains that the light from many digital devices “suppresses the release of the sleep-promoting hormone, melatonin, enhances alertness, and shifts circadian rhythms to a later hour—making it more difficult to fall asleep” (Leane 25).
    [Show full text]
  • Beyond Vision: Physiologic Effects of Visible Light Shadab A
    Beyond Vision: Physiologic effects of visible light Shadab A. Rahman Ph.D., M.P.H. Instructor in Medicine - Harvard Medical School Division of Sleep Medicine Associate Neuroscientist - Brigham and Women’s Hospital Division of Sleep and Circadian Disorders [email protected] Acknowledgements Brigham and Women’s Hospital Melissa St. Hilaire, PhD Erin Flynn-Evans, PhD MPH Steven Lockley, PhD Elizabeth Klerman, MD PhD Charles Czeisler, MD PHD Daniel Aeschbach, PhD Thomas Jefferson University George Brainard, PhD John Hanifin, PhD University of Toronto Robert Casper, MD Theodore Brown, PhD Colin Shapiro, MBBCh, FRCPC, PhD Shai Marcu, MD Outline • Characteristic non-visual physiologic responses to light exposure • Properties of light exposure that modulate non-visual responses • Nuances & application considerations • What do we know • Future directions Non-visual effects of light Cajochen et al., Behav Brain Res, 2000 Non-visual effects of light Cajochen et al., Behav Brain Res, 2000 Campbell & Dawson Physiol Behav, 1990 Classification of non-visual effects of light Direct effect Pacemaker mediated phase- shift effect Change in the levels Change in the timing 100 80 60 40 20 0 Before After Direct effect Czeisler et al., N Eng J Med, 1995 Pacemaker mediated (phase-shift) effect NIGHT 1 NIGHT 2 NIGHT 3 Bright Light at Night ~20 h ~20 h ~23 h Gronfier et al., Am J Physiol, 2004 Pathway for non-visual effects of light Czeisler et al., N Eng J Med, 1995 Vandewalle et al., Trends Cog. Sci. 2009 Vandewalle et al., Trends Cog Sci, 2009 Lighting characteristics that modulate non-visual effects of light INTENSITY DURATION HISTORY WAVELENGTH PATTERN TIMING Intensity and duration response Zeitzer et al., J.
    [Show full text]
  • The Brain-Sleep Connection: GCBH Recommendations on Sleep and Brain Health.” Available At
    The Brain–Sleep Connection: GCBH Recommendations on Sleep and Brain Health Introduction Background: About GCBH and Its Work The Global Council on Brain Health (GCBH) is an independent collaborative of scientists, health professionals, scholars and policy experts from around the world working in areas of brain health related to human cognition. The GCBH focuses on brain health relating to people’s ability to think and reason as they age, including aspects of memory, perception and judgment. The GCBH is convened by AARP with support from Age UK to offer the best possible advice about what older adults can do to maintain and improve their brain health. GCBH members come together to discuss specific lifestyle issue areas that may impact people’s brain health as they age with the goal of providing evidence-based recommendations for people to consider incorporating into their lives. We know that many people across the globe are interested in learning what they can do to maintain their brain health as they age. We aim to be a trustworthy source of information, basing recommendations on current evidence supplemented by a consensus of experts from a broad array of disciplines and perspectives. We intend to create a set of resources offering practical advice to the public, health care providers, and policy makers seeking to make and promote informed choices relating to brain health. When the GCBH launched in 2015, AARP surveyed adults to find out what brain health topics they were most interested in. Sleep was the number one topic for adults aged 50 and older, with 84% of those surveyed wanting to learn more about how sleep relates to brain health.
    [Show full text]
  • Efficacy of a Single Sequence of Intermittent Bright Light Pulses for Delaying Circadian Phase in Humans Gronfier Claude 1 * , Wright Kenneth P
    Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Claude Gronfier, Kenneth Wright, Richard Kronauer, Megan Jewett, Charles Czeisler To cite this version: Claude Gronfier, Kenneth Wright, Richard Kronauer, Megan Jewett, Charles Czeisler. Efficacyof a single sequence of intermittent bright light pulses for delaying circadian phase in humans.: Phase delaying efficacy of intermittent bright light. AJP - Endocrinology and Metabolism, American Phys- iological Society, 2004, 287 (1), pp.E174-81. 10.1152/ajpendo.00385.2003. inserm-00394458 HAL Id: inserm-00394458 https://www.hal.inserm.fr/inserm-00394458 Submitted on 10 Sep 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans Gronfier Claude 1 * , Wright Kenneth P. 1 2 , Kronauer Richard E. 3 , Jewett Megan E. 1 , Czeisler Charles A. 1 1 Division of Sleep Medicine Brigham and Women's Hospital - Harvard Medical School, University of Harvard, US 2 Department
    [Show full text]
  • Davis 6-2014CV
    June 12, 2014 Frederick Charles Davis CURRICULUM VITAE Name Frederick Charles Davis Office Address Department of Biology 134 Mugar Life Sciences Bldg. Northeastern University Boston, MA 02115 Work Phone (617) 373-4039 Fax (617) 373-3724 Work Email [email protected] Work Website http://www.northeastern.edu/biology/people/faculty/fred-davis/ Mobile (617) 838-3587 Place of Birth Tucson, Arizona Home Address 32 Middlecot St. Belmont, MA 02478 Education 1969-1974 BS Stanford University , Biological Sciences 1969-1974 MA Stanford University , Biological Sciences (Advisor: Colin S. Pittendrigh) 1974-1980 PhD University of Texas, Austin, Zoology (Advisor : Michael Menaker) Postdoctoral Training 1980-1983 Department of Anatomy and Brain Research Institute, UCLA School of Medicine (with Roger A. Gorski) Course Work 2011 “Molecular embryology of the mouse,” Cold Spring Harbor Laboratory Research Circadian rhythms: Neural mechanisms and development Academic Appointments 1983-1987 Assistant Professor, University of Virginia, Department of Biology (non-tenure-track) 1988-1993 Assistant Professor, Northeastern University, Department of Biology 1993-2003 Associate Professor, Northeastern University, Department of Biology 2003-present Professor, Northeastern University, Department of Biology 1 June 12, 2014 Frederick Charles Davis Major Administrative Leadership Positions Northeastern University 1995-1999 Graduate Coordinator, Department of Biology 1997-2001 Director, Behavioral Neuroscience Program, College of Arts and & 2009-2010 Sciences 2004-2006 Associate Chair and Chair of Tenure and Promotion Committee, & 2011 -2012 Department of Biology 2006-2009 Interim Chair, Department of Biology 2009 Principal Investigator, “Undergraduate Initiative in Interdisciplinary Research”, proposal to Howard Hughes Medical Institute Undergraduate Science Education Program, Northeastern University (NU’s first invitation, not funded).
    [Show full text]