Gfh 2016 Tagungsband Final.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Gfh 2016 Tagungsband Final.Pdf 27. Jahrestagung der Deutschen Gesellschaft für Humangenetik 27. Jahrestagung der Deutschen Gesellschaft für Humangenetik gemeinsam mit der Österreichischen Gesellschaft für Humangenetik und der Schweizerischen Gesellschaft für Medizinische Genetik 16.–18. 3. 2016, Lübeck Tagungsort Prof. Dr. med. Jörg Epplen, Bochum (Tagungspräsident 2017) Prof. Dr. med. Michael Speicher, Graz (Tagungspräsident 2015) Hotel Hanseatischer Hof Prof. Dr. med. Klaus Zerres, Aachen Wisbystraße 7–9 Prof. Dr. rer. nat. Wolfgang Berger, Zürich (Delegierter der SGMG) 23558 Lübeck Univ.-Prof. DDr. med. univ. Johannes Zschocke, Telefon: (0451) 3 00 20-0 (Innsbruck Delegierter der ÖGH) http://www.hanseatischer- hof.de/ [email protected] Fachgesellschaften Die Jahrestagung fi ndet im Hotel Hanseatischer Hof statt, das sich Deutsche Gesellschaft für Humangenetik (GfH) in in fussläufi ger Entfernung vom Lübecker Hauptbahnhof befi ndet. Vorsitzender: Prof. Dr. med. Klaus Zerres, Aachen Stellvertretende Vorsitzende: Prof. Dr. med. Gabriele Gillessen- Tagungspräsidentin Kaesbach, Lübeck Stellvertretende Vorsitzende: Prof. Dr. biol. hum. Hildegard Prof. Dr. med. Gabriele Gillessen- Kaesbach Kehrer- Sawatzki, Ulm Institut für Humangenetik Schatzmeister: Dr. rer. nat. Wolfram Kress, Würzburg Universität zu Lübeck/UKSH Schrift führerin: Dr. rer. nat. Simone Heidemann, Kiel Ratzeburger Allee 160, Haus 72 23538 Lübeck Österreichische Gesellschaft für Humangenetik (ÖGH) Telefon: 0049-451-500-2620 Univ. Prof. Dr. med. univ. Michael Speicher, Graz (Vorsitzender) Fax: 0049-451-500-4187 Univ. Doz. Dr. med. univ. Hans-Christoph Duba, Linz (Stellvertre- tende Vorsitzende) Tagungsorganisation Univ.-Prof. DDr. med. univ. Johannes Zschocke, Innsbruck (Stellvertretende Vorsitzende) Dr. Christine Scholz (Leitung) Dr. Gerald Webersinke, Linz (Schrift führer) Brigitte Fiedler (Teilnehmerregistrierung) Ass.-Prof. Priv. Doz. Dr. med. univ. Franco Laccone, Wien (Stellver- Deutsche Gesellschaft für Humangenetik e. V. tretender Schrift führer) GfH-Geschäft sstelle Univ.-Prof. Dr. med. univ. Peter Kroisel, Graz (Kassier) Inselkammerstr. 5 Dr. Ingrid Bader, MSc., Salzburg Stellvertretende (Kassierin) 82008 München-Unterhaching Univ.-Prof. Dr. med. univ. Florian Kronenberg, Innsbruck (Beisitzer) Tel. +49-(0)89-61456959 Univ. Prof. Dr. med. univ. Berthold Streubel, Wien (Assoziiert) Fax +49-(0)89-55027856 Univ. Doz. Dr. med. univ. Hans-Christoph Duba, Linz (Bundesfach- registrierung@gfh ev.de gruppenobmann Medizinische Genetik der ÖGH) Programmkommission Schweizerische Gesellschaft für Medizinische Genetik (SGMG) Sprecher der Programmkommission Co-Presidents: Prof. Dr. med. Christian Kubisch, Hamburg Prof. Dr. rer. nat. Wolfgang Berger, Zürich Dr. med. Siv Fokstuen, Genf Mitglieder Members of the Committee: Prof. Dr. med. Gillessen-Kaesbach, Lübeck (Tagungspräsidentin 2016) PD Dr. med. Deborah Bartholdi, Bern Prof. Dr. rer. nat. Kerstin Kutsche, Hamburg Prof. Dr. rer. nat. Sven Cichon, Basel Prof. Dr. med. Judith Fischer, Freiburg Prof. Dr. med., Dr. phil. II Karl Heinimann, Basel Prof. Dr. med. Th omas Haaf, Würzburg Dr. phil. nat. Franziska Joncourt, Bern Dr. med. Yorck Hellenbroich, Lübeck MSc Maurus Locher, Genf Prof. Dr. rer. nat. Frank Kaiser, Lübeck Dr. med. Dunja Niedrist, Zürich Prof. Dr. med. Reiner Siebert, Kiel Dr. Sc. nat. Elisabeth Saller, Zürich 58 medizinische genetik 1 · 2016 Grußworte der Tagungspräsidentin Liebe Kolleginnen und Kollegen, wig-Holstein den Studiengang Medizin aufzulösen. Der großen und überwältigenden Solidarität in der Kampagne „Lübeck kämpft “ der vom 16.–18. März 2016 wird die Studierenden, der Lehrenden aus Lübeck und vielen Hochschulen, 27. Jahrestagung der Deutschen Vertretern der Stadtpolitik und Wirtschaft sowie der Bürgerinnen Gesellschaft für Humangenetik und Bürger der Stadt Lübeck ist es zu verdanken, dass die Pläne der (GfH) gemeinsam mit der Öster- Landesregierung zurückgenommen wurden und der Standort Lübeck reichischen Gesellschaft für Hu- nun gesichert scheint. Seit ihrer Umstrukturierung mit neuer Verfas- mangengenetik (ÖGH) und der sung (2010) hat die UzL die Fakultäten aufgegeben und die Entschei- Schweizerischen Gesellschaft für dungskompetenz auf der Ebene des Präsidiums gebündelt. Ein ent- Medizinische Genetik (SGMG) scheidender Schritt in Hinblick auf mehr Unabhängigkeit war dann in Lübeck stattfi nden. Gemein- im Januar 2015 die Umwandlung der UzL in eine Stift ungsuniver- sam mit meinen Mitarbeiterin- sität. Gleichberechtigt neben der Medizin existieren die MINT-Fä- nen und Mitarbeitern möchte ich cher (Mathematik, Informatik, Naturwissenschaft und Technik), die Sie hierzu ganz herzlich einladen. den ca. 3500 Studierenden ein großes Fächerspektrum anbieten. Die Viele werden sich an die erfolg- 8 Prof. Dr. med. Gillessen-Kaesbach wissenschaft lichen Schwerpunkte sind in Profi lbereiche gegliedert, reiche Jahrestagung der GfH in zu denen auch die Medizinische Genetik gehört. Kern-Forschungs- Lübeck, die im Jahr 2000 unter Leitung von Prof Dr Eberhard Schwin- gebiete der UzL sind: Infektion und Entzündung, Gehirn, Hormone ger stattfand, erinnern. und Verhalten sowie Biomedizintechnik. Die Universität zu Lübeck, die 2014 ihr 50-jähriges Jubiläum fei- Im Jahr 1974 wurde der Beschluss gefasst, in Lübeck ein Insti- ern konnte, gehört zu den jüngeren universitären Einrichtungen in tut für Humangenetik zu gründen. Erster Leiter war Prof. Dr. Rudolf Deutschland und weist dennoch seit ihrer Gründung eine wechsel- (1975–1978). Im Anschluss übernahm Prof. Dr. Eberhard Schwinger volle Geschichte auf. Im Rahmen der Eröff nungsveranstaltung wird (1979–2005) die Leitungsfunktion. Im Jahr 2006 durft e ich dann die uns Björn Engholm einen kurzen Abriss der Geschichte der Lübe- Leitung des Instituts übernehmen. Wissenschaft liche Schwerpunk- cker Universität und der Entwicklung der Hansestadt geben. Unsere te waren zunächst die Pränataldiagnostik und die Neurogenetik. Seit Eröff nungsveranstaltung wird musikalisch von der Klezmer-Gruppe 2006 bestehen drei wissenschaft liche Schwerpunkte: Klinische Ge- YXALAG begleitet – die sich aus ehemaligen Studenten der Lübecker netik, Funktionelle Genetik und Präimplantationsdiagnostik. Vor Musikhochschule zusammensetzt. drei Jahren wurden eine W2-Professur und eine Sektion für funktio- 1964 wurde die Medizinische Akademie Lübeck als zweite Medi- nelle Genetik (Prof. Dr. Frank Kaiser) eingerichtet. Im Dezember 2013 zinische Fakultät der Christian-Albrechts-Universität zu Kiel gegrün- wurde das Lübecker-Zentrum für seltene Erkrankungen gegründet det. 1973 erfolgte eine Umbenennung in Medizinische Hochschule (stellvertretende Sprecherin: Prof Dr Gabriele Gillessen-Kaesbach). zu Lübeck. Erst sechs Jahre später (1979) konnte der gesamte Studien- Im Februar 2014 erteilte das Landesministerium Schleswig-Holstein gang Humanmedizin (vorklinischer und klinischer Abschnitt) ange- die Zulassung für das Zentrum für Präimplantationsdiagnostik. Das boten werden. Gleichzeitig wurde die Naturwissenschaft liche Fakul- Lübecker Institut für Humangenetik ist auf dem Campus hervorra- tät gegründet. Weitere Umbenennungen in Medizinische Universität gend sichtbar und vernetzt, insbesondere durch klinische und wissen- zu Lübeck (1985) und in Universität zu Lübeck (UzL) (2002) folg- schaft liche Kooperationen mit dem Institut für Neurogenetik (Prof. ten. Im Jahr 2010 gab es Bestrebungen der Landesregierung Schles- Dr. Christine Klein), dem Institut für integrative Genomik (Prof. Dr. © ############## 8 Größte Demonstration in der Geschichte Schleswig-Holstein am © ############## 16. 6. 2016 aus Anlass der drohenden Schließung der Medizin. Mehr als 8 Mitarbeiter des Instituts für Humangenetik Lübeck vor Haus 72 14.000 Personen demonstrieren friedlich in Kiel medizinische genetik 1 · 2016 59 27. Jahrestagung der Deutschen Gesellschaft für Humangenetik Im Talk nach 12 bieten wir eine Podiumsdiskussion mit Vertre- tern der Pathologie, Gynäkologie und Humangenetik zum Th ema: „Somatische Mutationen – Keimbahnmutationen an“. Neu in das Programm wurden aufgenommen: die Veranstaltungen mit den Pro und Kontra-Th emen: „PID: Erwartungen und Wirklichkeit“ und „Personalisierte Medizin – Der Weg vom genetischen Befund bei multifaktoriellen Erkrankungen hin zum klinischen Alltag: Fakt oder Fiktion?“. Zum Th ema Selbsthilfegruppen erwartet Sie eine gemein- same Veranstaltung der GfH und des VPAH: „Selbsthilfe und Hu- mangenetik – Zweckehe oder Partnerschaft ?“, sowie die „Chorea Huntington Konsortiumssitzung“, zu der alle interessierten Hu- mangenetiker sehr herzlich eingeladen sind. Auch in diesem Jahr wird es zwei Fortbildungsveranstaltungen geben: EDU 1 „Der un- gelöste Fall“ und EDU 2 „Bewegungsstörungen“. Traditionsgemäß eröff nen wir unsere Tagung mit der Schülerveranstaltung; in diesem Jahr mit dem Th ema: Wie wird der Mensch zum Modellbaukasten? © ############## Herzlich einladen möchte ich Sie auch zu unserem Gesellschaft s- 8 Haus 72, Institut für Humangenetik Campus Lübeck abend, der im Radisson Blue am Fluss der Trave stattfi ndet. Kurzfristig mussten wir den Veranstaltungsort in das Hotel Hanse- atischer Hof verlegen, da der Konzertsaal der Musik- und Kongress- Jeanette Erdmann) sowie mit der Abteilung für pädiatrische Endokri- halle im September letzten Jahres aufgrund von Sicherheitsmängeln nologie (Prof. Dr. Hiort). geschlossen wurde. Ich hoff e, dass Ihnen – trotz einiger Kompromis- Die Programmkommission unter Leitung von Prof. Dr. Christian se – der diesjährige Veranstaltungsort in guter Erinnerung bleibt. Der Kubisch
Recommended publications
  • Linked Mental Retardation Detected by Array CGH
    JMG Online First, published on September 16, 2005 as 10.1136/jmg.2005.036178 J Med Genet: first published as 10.1136/jmg.2005.036178 on 16 September 2005. Downloaded from Chromosomal copy number changes in patients with non-syndromic X- linked mental retardation detected by array CGH D Lugtenberg1, A P M de Brouwer1, T Kleefstra1, A R Oudakker1, S G M Frints2, C T R M Schrander- Stumpel2, J P Fryns3, L R Jensen4, J Chelly5, C Moraine6, G Turner7, J A Veltman1, B C J Hamel1, B B A de Vries1, H van Bokhoven1, H G Yntema1 1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; 2Department of Clinical Genetics, University Hospital Maastricht, Maastricht, The Netherlands; 3Center for Human Genetics, University of Leuven, Leuven, Belgium; 4Max Planck Institute for Molecular Genetics, Berlin, Germany; 5INSERM 129-ICGM, Faculté de Médecine Cochin, Paris, France; 6Service de Génétique et INSERM U316, Hôpital Bretonneau, Tours, France; 7 GOLD Program, Hunter Genetics, University of Newcastle, Callaghan, New South Wales 2308, Australia http://jmg.bmj.com/ Corresponding author: on October 2, 2021 by guest. Protected copyright. Helger G. Yntema, PhD Department of Human Genetics Radboud University Nijmegen Medical Centre P.O. Box 9101 6500 HB Nijmegen The Netherlands E-mail: [email protected] tel: +31-24-3613799 fax: +31-24-3616658 1 Copyright Article author (or their employer) 2005. Produced by BMJ Publishing Group Ltd under licence. J Med Genet: first published as 10.1136/jmg.2005.036178 on 16 September 2005. Downloaded from ABSTRACT Introduction: Several studies have shown that array based comparative genomic hybridization (array CGH) is a powerful tool for the detection of copy number changes in the genome of individuals with a congenital disorder.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Ageing-Associated Changes in DNA Methylation in X and Y Chromosomes
    Kananen and Marttila Epigenetics & Chromatin (2021) 14:33 Epigenetics & Chromatin https://doi.org/10.1186/s13072-021-00407-6 RESEARCH Open Access Ageing-associated changes in DNA methylation in X and Y chromosomes Laura Kananen1,2,3,4* and Saara Marttila4,5* Abstract Background: Ageing displays clear sexual dimorphism, evident in both morbidity and mortality. Ageing is also asso- ciated with changes in DNA methylation, but very little focus has been on the sex chromosomes, potential biological contributors to the observed sexual dimorphism. Here, we sought to identify DNA methylation changes associated with ageing in the Y and X chromosomes, by utilizing datasets available in data repositories, comprising in total of 1240 males and 1191 females, aged 14–92 years. Results: In total, we identifed 46 age-associated CpG sites in the male Y, 1327 age-associated CpG sites in the male X, and 325 age-associated CpG sites in the female X. The X chromosomal age-associated CpGs showed signifcant overlap between females and males, with 122 CpGs identifed as age-associated in both sexes. Age-associated X chro- mosomal CpGs in both sexes were enriched in CpG islands and depleted from gene bodies and showed no strong trend towards hypermethylation nor hypomethylation. In contrast, the Y chromosomal age-associated CpGs were enriched in gene bodies, and showed a clear trend towards hypermethylation with age. Conclusions: Signifcant overlap in X chromosomal age-associated CpGs identifed in males and females and their shared features suggest that despite the uneven chromosomal dosage, diferences in ageing-associated DNA methylation changes in the X chromosome are unlikely to be a major contributor of sex dimorphism in ageing.
    [Show full text]
  • Mouse Plxnb3 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Plxnb3 Knockout Project (CRISPR/Cas9) Objective: To create a Plxnb3 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Plxnb3 gene (NCBI Reference Sequence: NM_019587 ; Ensembl: ENSMUSG00000031385 ) is located on Mouse chromosome X. 35 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 35 (Transcript: ENSMUST00000002079). Exon 2~15 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a knock-out allele exhibit normal retinal stratification. Exon 2 starts from the coding region. Exon 2~15 covers 48.05% of the coding region. The size of effective KO region: ~6850 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 35 Legends Exon of mouse Plxnb3 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1372 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 632 bp section downstream of Exon 15 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • CPTC-CDK1-1 (CAB079974) Immunohistochemistry
    CPTC-CDK1-1 (CAB079974) Uniprot ID: P06493 Protein name: CDK1_HUMAN Full name: Cyclin-dependent kinase 1 Tissue specificity: Isoform 2 is found in breast cancer tissues. Function: Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and G1-S transition via association with multiple interphase cyclins. Required in higher cells for entry into S-phase and mitosis. Phosphorylates PARVA/actopaxin, APC, AMPH, APC, BARD1, Bcl-xL/BCL2L1, BRCA2, CALD1, CASP8, CDC7, CDC20, CDC25A, CDC25C, CC2D1A, CENPA, CSNK2 proteins/CKII, FZR1/CDH1, CDK7, CEBPB, CHAMP1, DMD/dystrophin, EEF1 proteins/EF-1, EZH2, KIF11/EG5, EGFR, FANCG, FOS, GFAP, GOLGA2/GM130, GRASP1, UBE2A/hHR6A, HIST1H1 proteins/histone H1, HMGA1, HIVEP3/KRC, LMNA, LMNB, LMNC, LBR, LATS1, MAP1B, MAP4, MARCKS, MCM2, MCM4, MKLP1, MYB, NEFH, NFIC, NPC/nuclear pore complex, PITPNM1/NIR2, NPM1, NCL, NUCKS1, NPM1/numatrin, ORC1, PRKAR2A, EEF1E1/p18, EIF3F/p47, p53/TP53, NONO/p54NRB, PAPOLA, PLEC/plectin, RB1, TPPP, UL40/R2, RAB4A, RAP1GAP, RCC1, RPS6KB1/S6K1, KHDRBS1/SAM68, ESPL1, SKI, BIRC5/survivin, STIP1, TEX14, beta-tubulins, MAPT/TAU, NEDD1, VIM/vimentin, TK1, FOXO1, RUNX1/AML1, SAMHD1, SIRT2 and RUNX2. CDK1/CDC2-cyclin-B controls pronuclear union in interphase fertilized eggs. Essential for early stages of embryonic development. During G2 and early mitosis, CDC25A/B/C-mediated dephosphorylation activates CDK1/cyclin complexes which phosphorylate several substrates that trigger at least centrosome separation, Golgi dynamics, nuclear envelope breakdown and chromosome condensation. Once chromosomes are condensed and aligned at the metaphase plate, CDK1 activity is switched off by WEE1- and PKMYT1-mediated phosphorylation to allow sister chromatid separation, chromosome decondensation, reformation of the nuclear envelope and cytokinesis.
    [Show full text]
  • The Function and Evolution of C2H2 Zinc Finger Proteins and Transposons
    The function and evolution of C2H2 zinc finger proteins and transposons by Laura Francesca Campitelli A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Laura Francesca Campitelli 2020 The function and evolution of C2H2 zinc finger proteins and transposons Laura Francesca Campitelli Doctor of Philosophy Department of Molecular Genetics University of Toronto 2020 Abstract Transcription factors (TFs) confer specificity to transcriptional regulation by binding specific DNA sequences and ultimately affecting the ability of RNA polymerase to transcribe a locus. The C2H2 zinc finger proteins (C2H2 ZFPs) are a TF class with the unique ability to diversify their DNA-binding specificities in a short evolutionary time. C2H2 ZFPs comprise the largest class of TFs in Mammalian genomes, including nearly half of all Human TFs (747/1,639). Positive selection on the DNA-binding specificities of C2H2 ZFPs is explained by an evolutionary arms race with endogenous retroelements (EREs; copy-and-paste transposable elements), where the C2H2 ZFPs containing a KRAB repressor domain (KZFPs; 344/747 Human C2H2 ZFPs) are thought to diversify to bind new EREs and repress deleterious transposition events. However, evidence of the gain and loss of KZFP binding sites on the ERE sequence is sparse due to poor resolution of ERE sequence evolution, despite the recent publication of binding preferences for 242/344 Human KZFPs. The goal of my doctoral work has been to characterize the Human C2H2 ZFPs, with specific interest in their evolutionary history, functional diversity, and coevolution with LINE EREs.
    [Show full text]
  • Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation Chip-Sequencing Data Processing Pipeline
    Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation ChIP-Sequencing Data Processing Pipeline Erinija Pranckeviciene Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa c Erinija Pranckeviciene, Ottawa, Canada, 2015 Abstract The rapidly advancing high-throughput and next generation sequencing technologies facilitate deeper insights into the molecular mechanisms underlying the expression of phenotypes in living organisms. Experimental data and scientific publications following this technological advance- ment have rapidly accumulated in public databases. Meaningful analysis of currently avail- able data in genomic databases requires sophisticated computational tools and algorithms, and presents considerable challenges to molecular biologists without specialized training in bioinfor- matics. To study their phenotype of interest molecular biologists must prioritize large lists of poorly characterized genes generated in high-throughput experiments. To date, prioritization tools have primarily been designed to work with phenotypes of human diseases as defined by the genes known to be associated with those diseases. There is therefore a need for more prioritiza- tion tools for phenotypes which are not related with diseases generally or diseases with which no genes have yet been associated in particular. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) is a method of choice to study the gene regulation processes responsible for the expression of cellular phenotypes. Among publicly available computational pipelines for the processing of ChIP-Seq data, there is a lack of tools for the downstream analysis of composite motifs and preferred binding distances of the DNA binding proteins.
    [Show full text]
  • UC San Diego UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Astrocyte activity modulated by S1P-signaling in a multiple sclerosis model Permalink https://escholarship.org/uc/item/2bn557vr Author Groves, Aran Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Astrocyte activity modulated by S1P-signaling in a multiple sclerosis model A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Neurosciences by Aran Groves Committee in charge: Professor Jerold Chun, Chair Professor JoAnn Trejo, Co-Chair Professor Jody Corey-Bloom Professor Mark Mayford Professor William Mobley 2015 The Dissertation of Aran Groves is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2015 iii TABLE OF CONTENTS Signature Page ..................................................................................................... iii Table of Contents ................................................................................................. iv List of Figures ....................................................................................................... vi List of Tables ....................................................................................................... viii Acknowledgments ................................................................................................
    [Show full text]
  • Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
    Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you.
    [Show full text]
  • Phenotypic and Genotypic Characterization of Families With
    www.nature.com/scientificreports OPEN Phenotypic and genotypic characterization of families with complex intellectual disability identifed pathogenic genetic variations in known and novel disease genes Hossein Darvish1,2, Luis J. Azcona3,4, Abbas Tafakhori5, Roxana Mesias3,6, Azadeh Ahmadifard7, Elena Sanchez3, Arman Habibi5, Elham Alehabib7, Amir Hossein Johari7, Babak Emamalizadeh8, Faezeh Jamali7, Marjan Chapi7, Javad Jamshidi9,10, Yuji Kajiwara11,12 & Coro Paisán-Ruiz4,12,13,14,15* Intellectual disability (ID), which presents itself during childhood, belongs to a group of neurodevelopmental disorders (NDDs) that are clinically widely heterogeneous and highly heritable, often being caused by single gene defects. Indeed, NDDs can be attributed to mutations at over 1000 loci, and all type of mutations, ranging from single nucleotide variations (SNVs) to large, complex copy number variations (CNVs), have been reported in patients with ID and other related NDDs. In this study, we recruited seven diferent recessive NDD families with comorbidities to perform a detailed clinical characterization and a complete genomic analysis that consisted of a combination of high throughput SNP-based genotyping and whole-genome sequencing (WGS). Diferent disease-associated loci and pathogenic gene mutations were identifed in each family, including known (n = 4) and novel (n = 2) mutations in known genes (NAGLU, SLC5A2, POLR3B, VPS13A, SYN1, SPG11), and the identifcation of a novel disease gene (n = 1; NSL1). Functional analyses were additionally performed in a gene associated with autism-like symptoms and epileptic seizures for further proof of pathogenicity. Lastly, detailed genotype-phenotype correlations were carried out to assist with the diagnosis of prospective families and to determine genomic variation with clinical relevance.
    [Show full text]
  • Neurodevelopmental Phenotypes in Individuals with Pathogenic Variants in CHAMP1
    Downloaded from molecularcasestudies.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Neurodevelopmental Phenotypes in Individuals with Pathogenic Variants in CHAMP1 Madison Garrity1, Haluk Kavus2, Marta RojasVasquez3, Irene Valenzuela4, Austin Larson5, Sara Reed6, Gary Bellus6, Cyril Mignot7, Arnold Munnich8, Bertrand Isidor9, Wendy K. Chung2,10 Affiliations: 1. Columbia University School of Dental Medicine, New York, New York, USA 2. Department of Pediatrics, Columbia University Medical Center, New York, New York, USA 3. Department of Pediatric Hematology-Oncology, Stollery Children’s Hospital, Edmonton, Alberta Canada 4. Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, Barcelona, Spain. 5. Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, CO, USA. 6. Clinical Genetics & Genomic Medicine, Geisinger Health System, Danville, PA, USA. 7. APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, Paris, France. 8. Imagine Institute, INSERM UMR 1163, Université de Paris; Fédération de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France. 9. Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes Cedex 1, France; L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France. 10. Department of Medicine, Columbia University Medical Center, New York, New York, USA Corresponding author: Wendy K. Chung
    [Show full text]
  • An Improved Pig Reference Genome Sequence to Enable Pig Genetics and Genomics Research
    bioRxiv preprint doi: https://doi.org/10.1101/668921; this version posted October 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 An improved pig reference genome sequence to enable pig genetics and genomics research 2 3 Amanda Warr1, Nabeel Affara2, Bronwen Aken3, H. Beiki4, Derek M. Bickhart5, Konstantinos Billis3, 4 William Chow6, Lel Eory1, Heather A. Finlayson1, Paul Flicek3, Carlos G. Girón3, Darren K. Griffin7, 5 Richard Hall8, Greg Hannum9, Thibaut Hourlier3, Kerstin Howe6, David A. Hume1,†, Osagie Izuogu3, Kristi 6 Kim8, Sergey Koren10, Haibou Liu4, Nancy Manchanda11, Fergal J. Martin3, Dan J. Nonneman12, Rebecca 7 E. O’Connor7, Adam M. Phillippy,10, Gary A. Rohrer12, Benjamin D. Rosen13, Laurie A. Rund14, Carole A. 8 Sargent2, Lawrence B. Schook14, Steven G. Schroeder13, Ariel S. Schwartz9, Ben M. Skinner2, Richard 9 Talbot15, Elizabeth Tseng8, Christopher K. Tuggle4,11, Mick Watson1, Timothy P. L. Smith12*, Alan L. 10 Archibald,1* 11 12 Affilitations 13 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh 14 EH25 9RG, U.K. 15 2Department of Pathology, University of Cambridge, Cambridge CB2 1QP, U.K. 16 3European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, CB10 1SD, U.K. 17 4Department of Animal Science, Iowa State University, Ames, Iowa, U.S.A. 18 5Dairy Forage Research Center, USDA-ARS, Madison, Wisconsin, U.S.A. 19 6Wellcome Sanger Institute, Cambridge, CB10 1SA, U.K.
    [Show full text]