Osteology and Phylogeny of Oviparous Cyprinodont

Total Page:16

File Type:pdf, Size:1020Kb

Osteology and Phylogeny of Oviparous Cyprinodont Osteology and Phylogeny of Oviparous Cyprinodont Fishes (Order Cyprinodontiformes) By RAM PRAKASH SETHI A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA January, I960 ACKNOWLEDGMENTS It has been a long cherished dream of mine to be able to pursue graduate studies in the United States. For making this dream come true by providing me a Graduate Assistantship, I am extremely grateful to the Biology Department and the Graduate School of the University of Florida. The assistantship not only helped me financially and academically but also enabled me to come in contact with many friendly American students with whom I had the opportunity of exchanging ideas on numerous topics. Although lacking appropriate words to express the debt of gratitude which I owe to Dr. John D. Kilby, present chairman, and to Dr. Arnold B. Grobman, ex-chairman of my committee, I wish to thank them both for constant guidance and encouragement during the course of this study. Dr. Kilby originally suggested this problem to me and always answered my numerous questions most sympathetically while Dr. Grobman constantly stimulated me to enlarge its horizons. I also wish to thank the other members of my committee, Drs. Lewis Berner, Walter Auffenberg, Ernest S. Ford, and Howard K. Wallace for numerous courtesies, continued interest in my work, and valuable encouragement. Much of the material for this study was obtained from various institutions and a number of individuals have made available specimens or information to me. For such generous help, I am deeply obliged to Drs. Curt Kosswig, Zoologisches Staatsinstitut und Zoologisches Museum, Hamburg, ¥. Germany} E. Trewavas, British Museum, London, England) ii J. L. B. Smith and R. A. Jubbs, Rhodes University, Grahamstown, South Africa} J. J. Hoederaan, Zoologisch Museum, Amsterdam, Netherlands; James E. Bohlke, Academy of Natural Sciences of Philadelphia} L. P. Schultz, William R. Taylor, 0. A. Cooper, Daniel M. Cohen and Ernest A. Lachner, United States National Museum j William Follett, California Academy of Sciences} Clark Hubbs, University of Texas} Royal D. Suttkus, Tulane University; Caryl P. Haskins, Carnegie Institution of Washington! Donn E. Rosen, Genetics Laboratory, American Museum of Natural History; Margaret Storey and George S. Myers, Stanford University} Howard E. Evans, Cornell University} and Robert R. Miller, University of Michigan. I am also obliged to Drs. Carl L. Hubbs, Scripps Institution of Ocean- ography, and Luis Rene Rivas, University of Miami, for sending to me several papers pertinent to my problem. I am grateful to Mr. Herbert R. Axelrod, Publisher, Tropical Fish Hobbyist, for sending to me many Kodachrome transparencies of cyprinodonts as a special gift. To Drs. Robert R. Miller, Donn E. Rosen, Pierce Brodkorb, and Coleman J. Goin I am especially grateful for answering many questions about my research work and for taking continuous interest in the problems which arose. Thanks are also due to Miss Esther Coogle for help in labeling the figures which are included in this study. For encouragement, for stimulating discussion, and for numer- our courtesies, I am deeply indebted to most of the faculty and the graduate students in the Biology Department at the University of Florida. iv To the Graduate School I am grateful for financial assistance which facilitated my trip to the Genetics Laboratory of the American Museum of Natural History, to study some of the cleared and stained specimens of Dr. Donn E, Rosen and to discuss with him many problems of common Interest. This assistance also enabled me to visit the United States National Museum, where I examined material and arranged for loans. To Dr. Olive I. Reddick, Executive Secretary of the United States Educational Foundation in India, and to the Institute of International Education, Washington, I am indebted for a Fulbright Travel Grant without which my coming to the University of Florida would have been delayed considerably. I am also thankful to the Government of Uttar Pradesh, India, for a small loan for my studies abroad and to the managing committee of Agra College, Agra, India, for sanctioning a leave of absence. TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii LIST OF TABLES viii LIST OF FIGURES ix INTRODUCTION 1 Taxonomic Background 4 Materials and Methods ....... 21 GROUP I 28 Composition, Range, and Habitat 28 Osteology 29 Summary of Significant Osteological Characters of Group I 70 GROUP II 75 Composition, Range, and Habitat 73 Osteology 73 Summary of Significant Osteological Characters of Group II 78 RELATIONSHIPS OF GROUPS I AND II 81 GROUP III 89 Composition, Range, and Habitat . 89 Osteology 91 Summary of Significant Osteological Characters of Group HI 103 Relationships of Group IH 105 Evolutionary Trends within Group III 109 Relationships of Empetrichthys 113 t vi TABLE OF CONTENTS—Continued Page GROUP IV 116 Composition, Range, and Habitat 116 Osteology .......... 116 Summary of Significant Osteological Characters of Group IV 119 Relationships of Group IV 120 GROUP V 125 Composition, Range, and Habitat 123 Osteology 126 Summary of Significant Osteological Characters of Group V 154 Relationships of Group V 157 GROUP VI 140 Composition and Range 140 Osteology 141 Summary of Significant Osteological Characters of Group VI 144 Relationships of Group VI 146 Relationships and Taxonomy of Lamprichthys tanganicanus . 151 GROUP VII . 155 Composition and Range 155 Osteology 155 Summary of Significant Osteological Characters of Group VII 158 Relationships of Group VII 161 GROUP VHI 165 Composition and Range 165 Osteology 165 Summary of Significant Osteological Characters of Group VHI . 166 Relationships of Group VIII 168 vii TABLE OF CONTENTS—Continued Page DISCUSSION AND SUMMARY 172 Major Osteological Characteristics of Oviparous Cyprinodonts ...... 17S Osteological Features Peculiar to Different Groups ....... 174 Cyprinodont Paleontology 182 Ancestral Cyprinodont Stock 187 Evolutionary Trends 191 Taxonomic Implications 195 Dendrogram Showing the Relationship of Cyprinodont Fishes (tentative arrangement) . 196 Synopsis of the Families of Oviparous Cyprinodonts 204 CONCLUSIONS AND RECOMMENDATIONS 207 EXPLANATION OF ABBREVIATIONS USED IN FIGURES 218 FIGURES 224 LITERATURE CITED 267 BIOGRAPHICAL SKETCH 275 LIST OF TABLES Table Page 1. Vertebral Counts for Seven Species of Group I Cyprinodonts ......... 60 2. Dorsal Fin Ray Counts in Five Species of Group I Cyprinodonts ............ 65 S. Anal Fin Ray Counts for Five Species of Group I Cyprinodonts 66 4. Pelvic Fin Ray Counts for Five Species of Group I Cyprinodonts 67 5. Pectoral Fin Ray Counts for Five Species of Group I Cyprinodonts 70 6. Comparison of New World Genera (Group I) and Old World Genera (Group II) of Cyprinodonts 87 7. Comparison of Tooth Structure and Arrangement of Jaw Teeth in Several Species of Group III Cyprinodonts ..... 99 8. Number of Branch! ostegal Rays in Selected Species of Group III 100 9. Osteological Differences Between Empetrichthys and Orestias . 115 viii t LIST OF FIGURES Figure Page 1. Cyprlnodon v. variegatus : head skeleton (lateral~view). 225 2. Cualac tessellatus : A, head skeleton (lateral view); E7~single tooth 226 5. Cyprlnodon v. variegatus , skull i A, dorsal view; B, ventral view 226 4. Cyprlnodon v. variegatus, skull: A, posterior view, B, side view 227 5. Occipital region and first three vertebrae A, Cyprinodon v. variegatus ; B, Cualac tessellatus 228 6. Cyprlnodon v. variegatus t A, ethmoid region (dorsal view) B, ethmoTd region (inner view); C, ethmoid region (side view) j D, vomer and portion of parasphenoid (ventral view); F, nasal (dorsal view) 229 7. Cyprlnodon v. variegatus , orbitotemporal region: A, frontal and postorbital (dorsal view): B, frontal and postorbital (ventral view); C, lachrymal; D, alisphenoid ..... 250 8. Cyprinodon v. variegatus , parasphenoid, prootic, and vomer: A7 inner view; B, ventral view 251 9. Cyprinodon v. variegatus , otic region: A, pterolliic; B, epiotic; C, sphenotic; D, otoliths 252 10. Cyprinodon v. variegatus , exoccipital and basioccipitalj A, ventral view; B, inner view 255 11. Cyprinodon v. variegatus : A, exoccipital and basi- occipitaT (posterior view); B, supraoccipital (dorsal view) , . 254 12. Cyprinodon v. variegatus : hyomandibular, symplectic. mandibular arch, and opercular bones (outer view) . 254 ix j X LIST OF FIGURES—Continued Figures Page 15. Cyprinodon v. variegatus : hyomandibular, symplectic. mandibular arch and opercular bones (mesial view; . 235 14. Cyprinodon v. variegatus : hyoid cornu, branchiostegals and urohyal 235 15. A, branchial arches of Cyprinodon v. variegatus ; B, pharyngobranchial of Floridlchthys c. carpio . 256 16. Cyprinodon v. variegatus , pharyngobranchialsi A, inner""viewj B, ventral view 257 17. Cyprinodon v. variegatus t A, precaudal vertebraej B, caudal vertebrae) C, caudal vertebrae and caudal fin 257 18. Cyprinodon v. variegatus , first vertebra! A, anterior viewj B, posterior view 258 19. Cyprinodon v. variegatus : dorsal fin 258 20. Cyprinodon v. variegatus : anal fin 259 21. Cyprinodon v. variegatus : pelvic bones and fin rays . , 259 22. Cyprinodon v. variegatus : A, posttemporal and supra- cleithrum; B, pectoral girdle and fin rays 240 25. Pectoral girdle and fin rays of four species of cyprinodont fishes: A, Jordanella floridaej B, Qarmanella pulchra ; C, Floridlchthys c. carpio j D, Cualac tessellatus ~ 241 24. Aphanius
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • 2017 JMIH Program Book Web Version 6-26-17.Pub
    Organizing Societies American Elasmobranch Society 33rd Annual Meeting President: Dean Grubbs Treasurer: Cathy Walsh Secretary: Jennifer Wyffels Editor and Webmaster: David Shiffman Immediate Past President: Chris Lowe American Society of Ichthyologists and Herpetologists 97th Annual Meeting President: Carole Baldwin President Elect: Brian Crother Past President: Maureen A. Donnelly Prior Past President: Larry G. Allen Treasurer: F. Douglas Martin Secretary: Prosanta Chakrabarty Editor: Christopher Beachy Herpetologists’ League 75th Annual Meeting President: David M. Green Immediate Past President: James Spotila Vice-President: David Sever Treasurer: Laurie Mauger Secretary: Renata Platenburg Publications Secretary: Ken Cabarle Communications Secretary: Wendy Palin Herpetologica Editor: Stephen Mullin Herpetological Monographs Editor: Michael Harvey Society for the Study of Amphibians and Reptiles 60th Annual Meeting President: Richard Shine President-Elect: Marty Crump Immediate Past-President: Aaron Bauer Secretary: Marion R. Preest Treasurer: Kim Lovich Publications Secretary: Cari-Ann Hickerson Thank you to our generous sponsor We would like to thank the following: Local Hosts David Hillis, University of Texas at Austin, LHC Chair Dean Hendrickson, University of Texas at Austin Becca Tarvin, University of Texas at Austin Anne Chambers, University of Texas at Austin Christopher Peterson, University of Texas at Austin Volunteers We wish to thank the following volunteers who have helped make the Joint Meeting of Ichthyologists and Herpetologists
    [Show full text]
  • Morphological and Genetic Comparative
    Revista Mexicana de Biodiversidad 79: 373- 383, 2008 Morphological and genetic comparative analyses of populations of Zoogoneticus quitzeoensis (Cyprinodontiformes:Goodeidae) from Central Mexico, with description of a new species Análisis comparativo morfológico y genético de diferentes poblaciones de Zoogoneticus quitzeoensis (Cyprinodontiformes:Goodeidae) del Centro de México, con la descripción de una especie nueva Domínguez-Domínguez Omar1*, Pérez-Rodríguez Rodolfo1 and Doadrio Ignacio2 1Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Fuente de las Rosas 65, Fraccionamiento Fuentes de Morelia, 58088 Morelia, Michoacán, México 2Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, España. *Correspondent: [email protected] Abstract. A genetic and morphometric study of populations of Zoogoneticus quitzeoensis (Bean, 1898) from the Lerma and Ameca basins and Cuitzeo, Zacapu and Chapala Lakes in Central Mexico was conducted. For the genetic analysis, 7 populations were sampled and 2 monophyletic groups were identifi ed with a genetic difference of DHKY= 3.4% (3-3.8%), one being the populations from the lower Lerma basin, Ameca and Chapala Lake, and the other populations from Zacapu and Cuitzeo Lakes. For the morphometric analysis, 4 populations were sampled and 2 morphotypes identifi ed, 1 from La Luz Spring in the lower Lerma basin and the other from Zacapu and Cuitzeo Lakes drainages. Using these 2 sources of evidence, the population from La Luz is regarded as a new species Zoogoneticus purhepechus sp. nov. _The new species differs from its sister species Zoogoneticus quitzeoensis_ in having a shorter preorbital distance (Prol/SL x = 0.056, SD = 0.01), longer dorsal fi n base length (DFL/SL x = 0.18, SD = 0.03) and 13-14 rays in the dorsal fi n.
    [Show full text]
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • The Etyfish Project © Christopher Scharpf and Kenneth J
    CYPRINODONTIFORMES (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 3.0 - 13 Nov. 2020 Order CYPRINODONTIFORMES (part 3 of 4) Suborder CYPRINODONTOIDEI Family PANTANODONTIDAE Spine Killifishes Pantanodon Myers 1955 pan(tos), all; ano-, without; odon, tooth, referring to lack of teeth in P. podoxys (=stuhlmanni) Pantanodon madagascariensis (Arnoult 1963) -ensis, suffix denoting place: Madagascar, where it is endemic [extinct due to habitat loss] Pantanodon stuhlmanni (Ahl 1924) in honor of Franz Ludwig Stuhlmann (1863-1928), German Colonial Service, who, with Emin Pascha, led the German East Africa Expedition (1889-1892), during which type was collected Family CYPRINODONTIDAE Pupfishes 10 genera · 112 species/subspecies Subfamily Cubanichthyinae Island Pupfishes Cubanichthys Hubbs 1926 Cuba, where genus was thought to be endemic until generic placement of C. pengelleyi; ichthys, fish Cubanichthys cubensis (Eigenmann 1903) -ensis, suffix denoting place: Cuba, where it is endemic (including mainland and Isla de la Juventud, or Isle of Pines) Cubanichthys pengelleyi (Fowler 1939) in honor of Jamaican physician and medical officer Charles Edward Pengelley (1888-1966), who “obtained” type specimens and “sent interesting details of his experience with them as aquarium fishes” Yssolebias Huber 2012 yssos, javelin, referring to elongate and narrow dorsal and anal fins with sharp borders; lebias, Greek name for a kind of small fish, first applied to killifishes (“Les Lebias”) by Cuvier (1816) and now a
    [Show full text]
  • From the Western Mosquitofish, Gambusia Affinis (Cyprinodontiformes: Poeciliidae): New Distributional Records for Arkansas, Kansas and Oklahoma
    42 Salsuginus seculus (Monogenoidea: Dactylogyrida: Ancyrocephalidae) from the Western Mosquitofish, Gambusia affinis (Cyprinodontiformes: Poeciliidae): New distributional records for Arkansas, Kansas and Oklahoma Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Donald G. Cloutman P. O. Box 197, Burdett, KS 67523 Henry W. Robison Department of Biology, Southern Arkansas University, Magnolia, AR 71754 Studies on fish monogeneans in Oklahoma and S. fundulus (Mizelle) Murith and Beverley- are relatively uncommon (Seamster 1937, 1938, Burton in Northern Studfish,Fundulus catenatus 1960; Mizelle 1938; Monaco and Mizelle 1955; (McAllister et al. 2015, 2016). In Kansas, a McDaniel 1963; McDaniel and Bailey 1966; single species, S. thalkeni Janovy, Ruhnke, and Wheeler and Beverley-Burton 1989) with little Wheeler (syn. S. fundulus) has been reported or no published work in the past two decades from Northern Plains Killifish,Fundulus kansae or more. Members of the ancyrocephalid (see Janovy et al. 1989). Here, we report genus Salsuginus (Beverley-Burton) Murith new distributional records for a species of and Beverley-Burton have been reported Salsuginus in Arkansas, Kansas and Oklahoma. from various fundulid fishes including those from Alabama, Arkansas, Illinois, Kentucky, During June 1983 (Kansas only) and again Nebraska, New York, Tennessee, and Texas, between April 2014 and September 2015, and Newfoundland and Ontario, Canada, 36 Western Mosquitofish, Gambusia affinis and the Bahama Islands; additionally, two were collected by dipnet, seine (3.7 m, 1.6 species have been reported from the Western mm mesh) or backpack electrofisher from Big Mosquitofish, Gambusia affinis (Poeciliidae) Spring at Spring Mill, Independence County, from California, Louisiana, and Texas, and Arkansas (n = 4; 35.828152°N, 91.724273°W), the Bahama Islands (see Hoffman 1999).
    [Show full text]
  • Mis Caratulas 1 CORRECCION ADELITA
    Universidad de San Carlos de Guatemala Centro de Estudios del Mar y Acuicultura TRABAJO DE GRADUACIÓN Peces de aguas continentales presentes en las colecciones de referencia de Guatemala Presentado por T.A. ADA PATRICIA ESTRADA ALDANA Para otorgarle el título de: LICENCIADA EN ACUICULTURA Guatemala, septiembre de 2012 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA CENTRO DE ESTUDIOS DEL MAR Y ACUICULTURA CONSEJO DIRECTIVO Presidente M.Sc. Erick Roderico Villagrán Colón Coordinadora Académica M.Sc. Norma Edith Gil Rodas de Castillo Representante Docente Ing. Agr. Gustavo Adolfo Elías Ogaldez Representante Docente M.BA. Allan Franco De León Representante Estudiantil T.A. Dieter Walther Marroquín Wellmann Representante Estudiantil T.A. José Andrés Ponce Hernández AGRADECIMIENTOS A la Universidad de San Carlos de Guatemala y al Centro de Estudios del Mar y Acuicultura por prepararme académicamente. Al Centro de Datos para la Conservación del Centro de Estudios Conservacionistas, por su colaboración y apoyo. Al Museo de Historia Natural de la Universidad de San Carlos de Guatemala por el apoyo y confianza que me brindaron. Al programa EPSUM de la Universidad de San Carlos de Guatemala. A todas aquellas personas que contribuyeron a mi formación. DEDICATORIA A Dios por protegerme, darme la vida y ser fuente de sabiduría. A mis padres Marco Tulio Estrada Figueroa y Silvia Margarita Aldana y Aldana, quienes con mucho amor, esfuerzo y sacrificio me llevaron hasta la meta que hoy alcanzo. Este triunfo es para ustedes. A mi abuelita Rosa Isabel Aldana (Q.E.P.D.) y a mi tía Ada Luz Aldana por el cariño, buen ejemplo, consejos y apoyo que siempre me brindaron.
    [Show full text]
  • Butterfly Splitfin (Ameca Splendens) Ecological Risk Screening Summary
    Butterfly Splitfin (Ameca splendens) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2013 Revised, January 2018 Web Version, 8/27/2018 Photo: Ameca splendens. Source: Getty Images. Available: https://rmpbs.pbslearningmedia.org/resource/128605480-endangered-species/butterfly-goodeid- ameca-splendens/#.Wld1X7enGUk. (January 2018). 1 1 Native Range and Status in the United States Native Range From Fuller (2018): “This species is confined to a very small area, the Río Ameca basin, on the Pacific Slope of western Mexico (Miller and Fitzsimons 1971).” From Goodeid Working Group (2018): “This species comes from the Pacific Slope and inhabits the Río Ameca and its tributary, the Río Teuchitlán in Jalisco. More habitats in the ichthyological [sic] closely connected Sayula valley have been detected quite recently.” Status in the United States From Fuller (2018): “Reported from Nevada. Records are more than 25 years old and the current status is not known to us. One individual was taken in November 1981 (museum specimen) and another in August 1983 from Rodgers Spring, Nevada (Courtenay and Deacon 1983, Deacon and Williams 1984). Others were seen and not collected (Courtenay, personal communication).” From Goodeid Working Group (2018): “Miller reported, that on 6 May 1982, this species was collected in Roger's Spring, Clark County, Nevada, (pers. comm. to Miller by P.J. Unmack) where it is now extirpated. It had been exposed there with several other exotic species (Deacon [and Williams] 1984).” From FAO (2018): “Status of the introduced species in the wild: Probably not established.” From Froese and Pauly (2018): “Raised commercially in Florida, U.S.A.” Means of Introductions in the United States From Fuller (2018): “Probably an aquarium release.” Remarks From Fuller (2018): “Synonyms and Other Names: butterfly goodeid.” 2 From Goodeid Working Group (2018): “Some hybridisation attempts have been undertaken with the Butterfly Splitfin to solve its relationship.
    [Show full text]
  • 2020 Newsletter
    2020 ANNUAL NEWSLETTER Biological Sciences Happy Holidays from Biological Sciences at Western Michigan University. TABLE OF CONTENTS Letter from the Chair Page 2 Condolences - Emeriti Professors Page 3 , Molecular & Cellular Biology Page 4 Faculty Research Continues Page 5 & 6 Finding a New Way Page 7 We present you with the 2020 Biological Sciences Newsletter. It has been an eventful year and we want to Gene Convene share some of the highlights from the ever changing ways of Page 8 teaching and research. We hope you will feel part of our Students present department as you read. research Page 9 Re-imagine Labs 1 2 3 Page 10 Grants & Publications 2020 Page 11 A YEAR OF CHANGE DEPARTMENT ACTIVE, LEADING THE WAY TO Support the & FLEXIBILITY DESPITE PANDEMIC THE NEW NORMAL Department Page 15 1 BIOLOGICAL SCIENCES, WESTERN MICHIGAN UNIVERSITY 2020 NEWSLETTER Letter from the Chair Dear Friends and Alumni of the Department of Biological Sciences, We have had an unprecedented year and yet the department has thrived throughout the challenges. Our undergraduate programs include about 700 students and the graduate program holds 68 students. We are among the largest departments at WMU. Life in the department was normal and very active until March when the state declared a shelter in place. Classes turned 100% remote with a 3-day notice. No one was allowed on campus so research came to a screeching halt. All doors were locked for 5 weeks. There were only a few people allowed inside to maintain living things – animals, plants, etc. In May, they required “return to research plans” from anyone wanting to return to research labs.
    [Show full text]
  • Allotoca Diazi Species Complex (Actinopterygii, Goodeinae): Evidence of Founder Effect Events in the Mexican Pre- Hispanic Period
    RESEARCH ARTICLE Evolutionary History of the Live-Bearing Endemic Allotoca diazi Species Complex (Actinopterygii, Goodeinae): Evidence of Founder Effect Events in the Mexican Pre- Hispanic Period Diushi Keri Corona-Santiago1,2*, Ignacio Doadrio3, Omar Domínguez-Domínguez2 1 Programa Institucional de Maestría en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México, 2 Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México, 3 Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, España * [email protected] OPEN ACCESS Citation: Corona-Santiago DK, Doadrio I, Abstract Domínguez-Domínguez O (2015) Evolutionary History of the Live-Bearing Endemic Allotoca diazi The evolutionary history of Mexican ichthyofauna has been strongly linked to natural Species Complex (Actinopterygii, Goodeinae): events, and the impact of pre-Hispanic cultures is little known. The live-bearing fish species Evidence of Founder Effect Events in the Mexican Pre-Hispanic Period. PLoS ONE 10(5): e0124138. Allotoca diazi, Allotoca meeki and Allotoca catarinae occur in areas of biological, cultural doi:10.1371/journal.pone.0124138 and economic importance in central Mexico: Pátzcuaro basin, Zirahuén basin, and the Academic Editor: Sean Michael Rogers, University Cupatitzio River, respectively. The species are closely related genetically and morphologi- of Calgary, CANADA cally, and hypotheses have attempted to explain their systematics and biogeography. Mito- Received: August 12, 2014 chondrial DNA and microsatellite markers were used to investigate the evolutionary history of the complex. The species complex shows minimal genetic differentiation. The separation Accepted: March 10, 2015 of A.
    [Show full text]
  • 01 Astyanax Final Version.Indd
    Vertebrate Zoology 59 (1) 2009 31 31 – 40 © Museum für Tierkunde Dresden, ISSN 1864-5755, 29.05.2009 Osteology of the African annual killifi sh genus Callopanchax (Teleostei: Cyprinodontiformes: Nothobranchiidae) and phylogenetic implications WILSON J. E. M. COSTA Laboratório de Ictiologia Geral e Aplicada, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Caixa Postal 68049, CEP 21944-970, Rio de Janeiro, Brazil E-mail: wcosta(at)acd.ufrj.br Received on May 5, 2008, accepted on October 6, 2008. Published online at www.vertebrate-zoology.de on May 15, 2009. > Abstract Osteological structures of Callopanchax are fi rst described and illustrated. Twenty-six characters derived from comparisons of osseous structures among some aplocheiloid fi shes provided evidence supporting hypotheses of relationships among three western African genera (Callopanchax, Scriptaphyosemion and Archiaphyosemion), as proposed in recent molecular analysis. The clade comprising Callopanchax, Scriptaphyosemion and Archiaphyosemion is supported by a laterally displaced antero-proximal process of the fourth ceratobranchial. The sister group relationship between Callopanchax and Scriptaphyosemion is supported by a constriction on the posterior portion of the parasphenoid, an anterior expansion of the hyomandibula, a rectangular basihyal cartilage, an anterior pointed process on the fi rst vertebra, and a long ventrally directed hemal prezygapophysis on the preural centrum 2. Monophyly of Callopanchax is supported by a convexity on the dorsal margin of the opercle, a long interarcual cartilage, and long neural prezygapophyses on the anterior caudal vertebrae. > Key words Killifi shes, Callopanchax, Africa, Osteology, Annual fi shes. Introduction COSTA, 1998a, 2004) and among genera and species of the Rivulidae (e. g., COSTA, 1998b, 2005, 2006a, b).
    [Show full text]
  • Development and Comparative Morphology of the Gonopodium of Goodeid Fishes Clarence L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Northern Iowa Proceedings of the Iowa Academy of Science Volume 69 | Annual Issue Article 87 1962 Development and Comparative Morphology of the Gonopodium of Goodeid Fishes Clarence L. Turner Wartburg College Gullermo Mendoza Grinnell College Rebecca Reiter Grinnell College Copyright © Copyright 1962 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Turner, Clarence L.; Mendoza, Gullermo; and Reiter, Rebecca (1962) "Development and Comparative Morphology of the Gonopodium of Goodeid Fishes," Proceedings of the Iowa Academy of Science: Vol. 69: No. 1 , Article 87. Available at: https://scholarworks.uni.edu/pias/vol69/iss1/87 This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Turner et al.: Development and Comparative Morphology of the Gonopodium of Goode 1962] SELFINC OF H. NANA 571 Schiller, E. L. 1959c. Experimental studies on morphological variation in the cestode genus Hymenolepis. III. X-irradiation as a mechanism for facilitating analyses in H.. nana. Exp. Par. 8-427-470. Voge, M., and Heyneman, D. 1957. Development of Hymenolepis nana and Ii ymcnolepis dimi1111ta ( Cestoda: Hymenolepididae) in the inter­ mediate host Tribolium confusum. University of California Publications in Zoology .59:549-579. Voge, M., and Heyneman, D. 1958. Effect of high temperature on the larval development of Hymenolepis nana and Hymenolepis diminuta ( Cestoda: Cyclophyllidea).
    [Show full text]