Analcime Phenocrysts in Igneous Rocks: Primary Or Secondary?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Submarine Perspective of the Honolulu Volcanics, Oahu
Journal of Volcanology and Geothermal Research 151 (2006) 279–307 www.elsevier.com/locate/jvolgeores A submarine perspective of the Honolulu Volcanics, Oahu David A. Clague a,*, Jennifer B. Paduan a, William C. McIntosh b, Brian L. Cousens c, Alice´ S. Davis a, Jennifer R. Reynolds d a Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039-9644, USA b New Mexico Geochronology Research Laboratory, N.M. Bureau of Geology, New Mexico Tech, 801 Leroy Place, Socorro, 87801-4796, USA c Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6 d School of Fisheries and Ocean Sciences, West Coast and Polar Regions Undersea Research Center, University of Alaska Fairbanks, P.O. Box 757220, 213 O’Neill Building, Fairbanks, AK 99775, USA Accepted 15 July 2005 Available online 27 December 2005 Abstract Lavas and volcaniclastic deposits were observed and collected from 4 submarine cones that are part of the Honolulu Volcanics on Oahu, Hawaii. The locations of these and a few additional, but unsampled, vents demonstrate that nearly all the vents are located on or very close to the shoreline of Oahu, with the most distal vent just 12 km offshore. The clastic samples and outcrops range from coarse breccias to cross-bedded ash deposits and show that explosive volcanism at depths between about 350 and 590 m depth played a part in forming these volcanic cones. The eruptive styles appear to be dominantly effusive to strombolian at greater depths, but apparently include violent phreatomagmatic explosive activity at the shallower sites along the submarine southwest extension of the Koko Rift. -
Origin of Analcime in the Neogene Arikli Tuff, Biga Peninsula, NW Turkey
N. Jb. Miner. Abh. 189/1, 21 –34 Article Published online November 2011 Origin of analcime in the Neogene Arikli Tuff, Biga Peninsula, NW Turkey Sevgi Ozen and M. Cemal Goncuoglu With 8 fi gures and 3 tables Abstract: The Arikli Tuff in the Behram Volcanics, NW Anatolia, is characterized by its dominance of authigenic analcime. It was studied by optical microscopy, XRD, SEM/EDX, and ICP for a better understanding of the analcime formation, which occurs as coarse-grained euhedral to subhedral crystals in pores and pumice fragments as well as in clusters or fi ne-grained single crystals embedded in the matrix. Besides analcime, K-feldspar, dolomite, and smectite are found as further authigenic minerals. Based on the dominance of these authigenic minerals, the tuffs are petrographically separated into phyllosilicate-bearing vitric tuff, dolomite- rich vitric tuff, and K-feldspar-dominated vitric tuff. No precursor of zeolites other than analcime was detected. Petrographical and SEM investigations indicate that euhedral to subhedral analcime crystals found as a coarse-grained fi lling cement in voids and pumice fragments are precipitated from pore water, whereas fi ne-grained disseminated crystals are formed by the dissolution- precipitation of glassy material. Hydrolysis of glassy material that is similar in composition to analcime provides the additional Na, Al, Si, and K elements which are necessary for the formation of analcime. Key words: Alteration, analcime, Neogene tuff, NW Turkey, volcanic glass. Introduction (Kopenez), Kirka (Karaoren), Urla, Bahcecik-Golpazari- Goynuk, Nallihan-Cayirhan-Beypazari-Mihaliccik, Ka- Tuffs deposited in lacustrine conditions present a unique lecik-Hasayaz-Sabanozu-Candir, Polatli-Mülk-Oglakci- opportunity to study the zeolite-forming processes. -
Chemical Properties of the Nepheline Basanite from Deposit Husiná
1. Katarína HAKULINOVÁ, 2. Katarína KYSEĽOVÁ, 3. Jana MATULOVÁ A STUDY OF PHYSICO – CHEMICAL PROPERTIES OF THE NEPHELINE BASANITE FROM DEPOSIT HUSINÁ 1‐3. DEPARTMENT OF CHEMISTRY, FACULTY OF METALLURGY, TECHNICAL UNIVERSITY OF KOŠICE, LETNÁ 9, 042 00 KOŠICE, SLOVAKIA ABSTRACT: The submitted article deals with experimental study of chemical and physico‐chemical properties of the nepheline basanite from deposit Husina. The aim of presented work was to study his chemical and mineral composition and melting temperature. The melting temperature measuring was realized using Marsh furnace and high‐temperature microscope. On the base of these basanite properties is possible to appreciate his further industrial utilization. KEYWORDS: nepheline basanite, chemical and mineral composition, melting temperature, thermal analyses INTRODUCTION As approximately 250 stone quarries (in mining, occasionally mining, as a abandoned) mostly based on andesites (presenting the most often exploited rock) are located in Slovakia, vulcanic rock represent one of the most important raw materials needed to produce various forms of the building stone. Andesites and basalt rocks are centrobaric raw materials used for manufacturing of offhand worked stonecutter's products and hammer‐milled gravel aggregate. To its resistance of constant load, resistance of salts and chemical defreezing resources, it is used for roads, paths, squares and other vulnerable places [5]. Basalts in Slovakia have been also mined for petrurgic purposes (fusing basalt). Other opportunities of basalts industrial utilization mostly depend on the knowledge of chemical and physico – chemical properties. PETROGRAPHIC CHARACTERISTIC AND UTILIZATION OF NEPHELINE BASANITE FROM DEPOSIT HUSINÁ Basalts in Slovakia exist in neogene vulcanites mostly in south Slovakia in the surrounding of the Fiľakovo and the Cerová vrchovina Mts. -
Mineral Reactions in the Sedimentary Deposits of the Lake Magadi Region, Kenya
Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya RONALD C. SURD AM Department of Geology, University of Wyoming, Laramie, Wyoming 82071 HANS P. EUGSTER Department of Earth and Planetary Science, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT hand, the initial alkalic zeolite that will form in a specific alkaline lake environment cannot yet be predicted with confidence. Among The authigenic minerals, principally zeolites, in the Pleistocene to the many parameters controlling zeolite distribution, the compo- Holocene consolidated and unconsolidated sediments of the sitions of the volcanic glasses and of the alkaline solutions are cer- Magadi basin in the Eastern Rift Valley of Kenya have been inves- tainly of primary importance. tigated. Samples were available from outcrops as well as drill cores. Most zeolite studies are concerned with fossil alkaline lakes. The following reactions can be documented: (1) trachytic glass + While it is generally easy to establish the composition of the vol- H20 —» erionite, (2) trachytic glass + Na-rich brine —* Na-Al-Si gel, canic glass, the brines responsible for the authigenic reactions have + + (3) erionite + Na analcime + K + Si02 + H20, (4) Na-Al-Si long since disappeared. To overcome this handicap, it is desirable gelanalcime + H20, (5) calcite + F-rich brine—> fluorite + C03 , to investigate an alkaline lake environment for which glass as well (6) calcite + Na-rich brine —» gaylussite, and (7) magadiite —• as brine compositions can be determined — in other words, a + quartz + Na + H20. Erionite is the most common zeolite present, modern alkaline lake environment. Such an environment is Lake but minor amounts of chabazite, clinoptilolite, mordenite, and Magadi of Kenya. -
Miocene to Late Quaternary Patagonian Basalts (46–478S): Geochronometric and Geochemical Evidence for Slab Tearing Due to Active Spreading Ridge Subduction
Journal of Volcanology and Geothermal Research 149 (2006) 346–370 www.elsevier.com/locate/jvolgeores Miocene to Late Quaternary Patagonian basalts (46–478S): Geochronometric and geochemical evidence for slab tearing due to active spreading ridge subduction Christe`le Guivel a,*, Diego Morata b, Ewan Pelleter c,d, Felipe Espinoza b, Rene´ C. Maury c, Yves Lagabrielle e, Mireille Polve´ f,g, Herve´ Bellon c, Joseph Cotten c, Mathieu Benoit c, Manuel Sua´rez h, Rita de la Cruz h a UMR 6112 bPlane´tologie et Ge´odynamiqueQ, Universite´ de Nantes, 2 rue de la Houssinie`re, 44322 Nantes, France b Departamento de Geologı´a. Fac. Cs. Fı´sicas y Matema´ticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile c UMR 6538 bDomaines oce´aniquesQ, UBO-IUEM, place Nicolas-Copernic, 29280 Plouzane´, France d CRPG-CNRS UPR A2300, BP 20, 54501 Vandoeuvre-les-Nancy, France e UMR 5573, Dynamique de la Lithosphe`re, Place E. Bataillon, case 60, 34095, Montpellier Cedex 5, France f LMTG-OMP, 14 Avenue E. Belin, 31400 Toulouse, France g IRD-Departamento de Geologia de la Universidad de Chile, Chile h Servicio Nacional de Geologı´a y Minerı´a, Avda. Santa Marı´a 0104, Santiago, Chile Received 18 May 2005; received in revised form 29 August 2005; accepted 14 September 2005 Abstract Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera–Buenos Aires area (46–478S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. -
Petrology of Volcanic Rocks from Kaula Island, Hawaii Implications for the Origin of Hawaiian Phonolites
Contributions to Contrib Mineral Petrol (1986) 94:461-471 Mineralogy and Petrology Springer-Verlag 1986 Petrology of volcanic rocks from Kaula Island, Hawaii Implications for the origin of Hawaiian phonolites Michael O. Garcia 1, Frederick A. Frey 2, and David G. Grooms 1 * 1 Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HI 96822, USA 2 Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Abstract. A compositionally diverse suite of volcanic rocks, visited the island by helicopter courtesy of the U.S. Navy. including tholeiites, phonolites, basanites and nephelinites, Abundant unexploded ordnance, bird nests (total bird pop- occurs as accidental blocks in the palagonitic tuff of Kaula ulation >45,000) and steep cliffs surrounding the island Island. The Kaula phonolites are the only documented made sample collection hazardous. phonolites from the Hawaiian Ridge. Among the accidental Kaula Island consists of approximately 160 m of well- blocks, only the phonolites and a plagioclase basanite were bedded, palagonitic tuff (Fig. 2). The tuff contains acciden- amenable to K-Ar age dating. They yielded ages of tal fragments of light gray (phonolite) and dark gray (ba- 4.0-4.2 Ma and 1.8 ___0.2 Ma, respectively. Crystal fraction- salt) volcanic rocks, coralline material, coarse-grained ultra- ation modeling of major and trace element data indicates mafic and marie xenoliths (including spinel pyroxenites, that the phonolites could be derived from a plagioclase garnet pyroxenites, spinel peridotites and dunites) and me- basanite by subtraction of 27% clinopyroxene, 21% plagio- gacrysts (augite, anorthoclase, olivine, Al-spinel and titano- clase, 16% anorthoclase, 14% olivine, 4% titanomagnetite magnetite). -
Petrography and Engineering Properties of Igneous Rocks
ENGINEERil~G MONOGRAPHS No. I United States Department of the Interior BUREAU OF RECLAMATION PETROGRAPIIY AND ENGINEERING· PROPER11ES OF IGNEOUS ROCKS hy Rit~bard C. 1\lielenz Denver, Colorado October 1948 95 cents (R.evised September 1961) United States Department of the Interior STEWART L. UDALL, Secretacy Bureau of Reclamation FLOYD E. DOMINY, Commissioner G~T BLOODGOOD, Assistant Commissioner and Chief Engineer Engineering Monograph No. 1 PETROGRAPHY AND ENGINEERING PROPERTIRES ·OF IGNEOUS RO<;:KS by Richard C. Mielenz Revised 1959. by William Y. Holland Head. Petrographic Laboratory Section Chemical Engineering Laboratory Branch Commissioner's Office. Denver Technical Infortnation Branch Denver Federal Center Denver, Colorado ENGINEERING MONOGRAPHS are published in limited editions for the technical staff of the Bureau of Reclamation and interested technical circles in Government and private agencies. Their purpose is to record devel opments, innovations, .and progress in the engineering and scientific techniques and practices that are employed in the planning, design, construction, and operation of Rec lamation structures and equipment. Copies 'may be obtained from the Bureau of Recla- · mation, Denver Federal Center, Denver, Colon.do, and Washington, D. C. Excavation and concreting of altered zones in rhyolite dike in the spillway foundation. Davis Damsite. Arizona-Nevada. Fl'ontispiece CONTENTS Page Introduction . 1 General Basis of Classification of Rocks . 1 Relation of the Petrographic Character to the Engineering Properties of Rocks . 3 Engineering J?roperties of Igneous Rocks ................................ :. 4 Plutonic Rocks . 4 Hypabyssal Rocks . 6 Volcanic Rocks..... 7 Application of Petrography to Engineering Problems of the Bureau of Reclamation . 8 A Mineralogic and Textural Classification of Igneous Rocks . -
Primary Igneous Analcime: the Colima Minettes
American Mineralogist, Volume 74, pages216-223, 1989 Primary igneous analcime: The Colima minettes Jlnrns F. Lurrn Department of Earth and Planetary Sciences,Washington University, St. Louis, Missouri 63 130, U.S.A. T. Kunrrs Kvsnn Department of Geological Sciences,University of Saskatchewan,Saskatoon, Saskatchewan S7N 0W0, Canada Ansrnrcr Major-element compositions, cell constants, and oxygen- and hydrogen-isotopecom- positions are presentedfor six analcimes from differing geologicenvironments, including proposed primary @-type) analcime microphenocrysts from a late Quaternary minette lava near Colima, Mexico. The Colima analcimehas X.,.,",: 0.684, ao: 13.712A, and one of the lowest D'sOvalues yet recorded for analcime (+9.28m).The major difficulty in identifuing primary @-type) igrreousanalcime is distinguishing it from analcime formed by ion-exchangeconversion of leucite (L-type analcime) or other precursor minerals. Pet- rographic criteria are shown to be unreliable in discriminating P and L analcimes,although the higher KrO and Rb contents and D'8Ovalues of L-type crystals may be diagnostic. P- and L-type analcimescan be distinguishedfrom classichydrothermal varieties (H-type) by the lower Fe contents of the latter. H-type analcimes,however, can have 6t8Ovalues as low as 8.9Vmand cannot be distinguished from P-type analcimes by this criterion. Analcimes formed from volcanic glass or zeolite precursorsin saline, alkaline lakes (S- type) or metamorphic sequences(M-type) can be distinguished from other varieties by their higher silica contents, smaller cell constants,and higher d'8O values of > + 17.7Vm. For all types of analcime, d'8O of the channel water does not correlate with 6180of the framework oxygen. -
Geothermometry of Two Cascade Geothermal Systems
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 12-8-2016 Geothermometry of Two Cascade Geothermal Systems Donnel Alexander Malkemus Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons Let us know how access to this document benefits ou.y Recommended Citation Malkemus, Donnel Alexander, "Geothermometry of Two Cascade Geothermal Systems" (2016). Dissertations and Theses. Paper 3369. https://doi.org/10.15760/etd.5260 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Geothermometry of Two Cascade Geothermal Systems by Donnel Alexander Malkemus A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: Robert B. Perkins, Chair Max Rudolph Carl Palmer Portland State University 2016 ABSTRACT For this thesis I applied classical and multi-component geothermometry techniques to new water chemistry data from Breitenbush Hot Springs, Oregon and the Wind River Valley, Washington. A total of 20 well, spring, and stream samples from Breitenbush Hot Springs and 4 spring samples from the Wind River Valley were collected and analyzed for major, minor, and select trace anions and cations, as well as stable oxygen and hydrogen isotopes. I used two computer programs, GeoT and RTEst, to conduct multi- component geothermometry reservoir condition estimation on each water sample. Water chemistry data from Breitenbush Hot Springs indicates a range of thermal, nonthermal, and mixed waters in wells and springs. -
Synthesis of Analcime from Natural Heulandite and Clinoptilolite
THE AMERICAN MINERALOGIST, VOL. 56, SEPTEIVIBER_OCTOBtrR, 1971 SYNTHESIS OF ANALCIME FROM NATURAL HEULANDITE AND CLINOPTILOLITE Jenos R. Bor.ns, Department of Geology,University of Otago, Dunedin, New Zealand' Als:rnncr Analcime has been synthesized from natural heulandite and clinoptilolite at 100oC with solutions of NaOH (0.1M) and NazCOs (0.lM and 0.01M) in 3-week runs. Both increased pH and Na+ concentration favor the reaction. The Si/Al ratio of the analcime product is largely a function of the Si/Al ratio of the zeoiite reactant. Analogy of the experiments wi'uh saline-alkaline lakes and marine environments is discussed. Inrnooucrrolr Numerous occurrenceswhere analcime and heulandite group minerals co-existin the same suite of sedimentary rocks have been summarized by Hay (1966, p. 21-30). Additional occurrences, both non-n:arine and marine are recorded at Kaka Point, New Zealand (Coombs, 1965); in the Green River Formation, Wyoming (Goodwin and Surdam, 1967); a't PleistoceneLake Tecopa, California (Sheppardand Gude' 1968);in the Barstow Formation, California (Sheppard and Gude, 1969); at Beard- more Glaciet area,Antarctica (Barrett, 1969);in geothermalbore holes, Yellowstone Park, Wyoming (Honda and Muffier, 1970); and in the Wagon Bed Formation, Wyoming (Boles and Surdam, in preparation). At all theselocalities the host rocks show evidencef or the former presence of volcanic glass. Saline or saline-alkaline solutions are inferred to have beenpresent in most cases. Hay (1966) and Iijima and Hay (1968) point out that in lacustrine environments analcime commonly forms in low-temperature reactions from other zeolites including clinoptilolite. These reactions are implied by the distribution of zeolites as a function of age in saline-lakedeposits. -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
The Crystal Structure and Chemical Composition of Pollucite
Zeitschrift fUr Kristallographie, Bd. 129, S. 280-302 (1969) The crystal structure and chemical composition of pollucite By RICHARD M. BEGER * (Received May 20, 1968) Crystallographic Laboratory, Massachusetts Institute of Technology Cambridge, Massachusetts Auszug Die Struktur des Pollucits von Rumford, Maine, wurde aus 213, mit einem Diffraktometer gemessenen Interferenzen bestimmt und bis R = 0,050 fiir aIle Interferenzen verfeinert. Raumgruppe ist Ia3d, Gitterkonstante a = 13,69 A. Das Strukturgeriist ist das gleiche wie beim Analcim. Die gro13en Hohlriiume sind von Caesiumatomen und Wassermolekiilen besetzt. Die Natriumatome befinden sich wie beim Analcim in der Punktlage 24c, [t to]. Sie sind jedoch in groJ3eren, von Wassermolekiilen begrenzten Gruppen nach Zufall angesam- melt. Die allgemeine Zusammensetzung des Pollucits liiJ3t sich durch eine y Formel von der Art CsxNayAlx+ySi4s-x-y096 . (16-x) H20 mit 2y :> 16 - x :> ausdriicken. Abstract The structure of pollucite from Rumford, Maine has been determined and refined. The space group is Ia3d with cell edge a = 13.69 A. The structure was investigated using 213 independent reflection intensities measured on a single crystal diffractometer. Pollucite has the analcime framework with the cesium atoms occupying the large voids in the framework, as initially suggested by NARAY-SZABO. The water molecules occupy the large voids of this same set which are not occupied by the cesium atoms. The sodium atoms are located in equipoint 24c, at t t 0, in the positions between the water molecules. The water molecules and the sodium atoms occupy the same positions as they do in analcime, but they occur only in randomly distributed clusters of atoms whose outer members are restricted to water molecules.