Primality Proving with Cyclotomy

Total Page:16

File Type:pdf, Size:1020Kb

Primality Proving with Cyclotomy @ PRIMALITY PROVING WITH CYCLOTOMY PRIMALITY PROVING WITH CYCLOTOMY ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam, op gezag van de Rector Magnificus prof. dr. S. K. Thoden van Velzen in het openbaar te verdedigen in de Aula der Universiteit (Oude Lutherse Kerk, ingang Singel 411, hoek Spui), op donderdag 20 december 1990 te 16.30 uur en te 17.30 uur door WIEBREN BOSMA geboren te Den Burg (Texel) en MARCUS PAULUS MARIA VAN DER HULST geboren te Amsterdam promotores: prof. dr. H. W. Lenstra, Jr. dr. P. van Emde Boas copromotor: dr. A. K. Lenstra promotiecommissie: prof. dr. G. B. M. van der Geer prof. dr. H. Jager dr. R. J. Schoof prof. dr. P. M. B. Vit´anyi Faculteit Wiskunde en Informatica iv Mais ne trouvez vous pas que c'est presque faire trop d'honneur aux nombres premiers que d'y r´epandre tant de richesses, et ne doit-on aucun ´egard au gout^ raffin´e de notre si`ecle? Daniel Bernoulli, Letter to L. Euler, 18 March 1778. v vi CONTENTS. Preface. ix I. History. 1 1. Terminology. 2 2. Complexity. 5 3. Trial division. 10 4. Difference of squares. 12 5. Quadratic forms. 14 6. The converse of Fermat's theorem. 18 7. Tests of Lucas-Lehmer type. 24 8. Pseudoprimes. 34 9. The Gauss sum test. 38 10. Abelian varieties. 42 11. Miscellaneous results. 49 II. Theory. 53 1. Compositeness testing. 54 2. Cyclotomic constellations. 57 3. Characters and Gauss sums. 64 4. Constructing cyclotomic constellations. 70 5. Lucas-Lehmer type tests. 80 6. The Jacobi sum test. 84 7. Combining Jacobi sum and Lucas-Lehmer type tests. 93 8. Jacobi sums. 98 9. The final stage. 106 III. Optimization. 109 1. Introduction. 110 2. Finding an optimal matching. 114 3. Choosing s. 123 4. Choosing t. 130 5. Choosing v. 133 6. Factoring time. 136 IV. Algorithm. 141 1. Outline of the algorithm. 142 2. Preparation of tables. 145 3. Initializations. 154 4. Optimization. 157 5. Lucas-Lehmer and Jacobi sum tests. 170 6. Final trial divisions. 181 vii V. Analysis. 185 1. Preliminaries. 186 2. Size of the parameters. 188 3. Analysis of the preparation of the tables. 198 4. Analysis of the Jacobi sum part of the algorithm. 209 5. Generated proof. 216 6. Inverting an integer matrix. 219 VI. Performance. 225 1. Introduction. 226 2. Approximate functions for basic operations. 227 3. Performance of the test. 241 4. A large example. 247 5. Comparison. 259 VII. Instructions for use. 265 1. Introduction. 266 2. Setting up. 269 3. Running a primality test. 274 4. Helping your primality test. 281 5. Restarting or parallelizing the primality test. 283 Tables. 287 1. Values of t and e(t). 288 2. Extensions (minimum polynomials, discriminants, matrices). 301 3. Gauss sums as products of Jacobi sums. 312 Bibliography. 317 List of symbols. 328 Index. 333 Samenvatting. 336 viii PREFACE. This thesis consists of seven chapters, and five appendices. In the first chapter the history of the primality testing problem is outlined. The second chapter comprises a mathematical description of the primality test that is the main subject of this thesis. In particular, it is proved in this chapter that the conditions that an integer n must satisfy in order to pass the test are sufficient to prove the primality of n. In the third chapter some problems (and their solutions) are discussed that regard the optimal choice of the parameters in the test. A detailed description of the primality test is given in the fourth chapter. In the fifth chapter the complexity bounds of the algorithm are given and some heuristics necessary to obtain these bounds are presented. In the sixth chapter an overview is given of the performance of the primality test, and the seventh chapter is intended to be a guideline for those people interested in installing and using the computer program that accompanies this thesis. Finally, the appendices consist of some tables that are part of the computer program, a bibliography, a list of symbols, an index, and a Dutch summary. The primality testing algorithm, as described in Chapter IV, is a modified version of the so- called Jacobi sum test (cf. [29], [30]). The main theoretical improvements are the following. First of all, it turned out to be possible, and very fruitful, to combine the Jacobi sum test with Lucas-Lehmer type tests (which are classically used for primes of a special form), by putting everything in the same mathematical framework; see Sections II.5 and II.7. The second improvement makes the new algorithm faster: a Jacobi sum test, which consists of the verification of an identity (involving Jacobi sums), will in general be done in a smaller ring. The construction of the rings necessary for this is explained in Section II.4. Thirdly, it has been possible to reduce the amount of work involved, by doing several of such Jacobi sum tests simultaneously; this is explained in Section II.8. To find good combinations of tests, and to determine good values for all parameters in the improved primality test, an intricate optimization stage had to be built into the algorithm (see Chapter III). The effect of these changes on the performance of the algorithm (both in a theoretical and a practical sense), is explained in Chapters V and VI. An important conclusion is, that in practice the improved algorithm performs better than any other general purpose primality proving algorithm that is currently known, in two respects: it is faster, and it is capable of coping with larger primes. ix This thesis is the product of joint work. Wieb Bosma is primarily responsible for the first three chapters, containing a description of the theoretical aspects of the subject, while the last three chapters, devoted to the algorithmical aspects, are mainly the responsibility of Marc-Paul van der Hulst. Chapter IV combines both theoretical and algorithmical aspects and the responsibility is therefore shared by the authors. Most of the research for this thesis has been done between June 1985 and July 1989 at the Faculteit Wiskunde en Informatica of the Universiteit van Amsterdam. Part of it has been carried out while the authors visited the University of California at Berkeley1, the Department of Computer Science of the University of Chicago, and while Marc-Paul van der Hulst visited Bell Communications Research in Morristown, New Jersey. The authors thank all of the above institutions for their hospitality, and for providing the facilities to generate and test the computer programs. This thesis could not have been written without the support of many. Here, the authors take the opportunity to express their gratitude to the following persons for contributions to their scientific well-being. We owe many thanks to Peter van Emde Boas for his continuing support and en- couragement. We wish to convey special thanks to Arjen Lenstra, for his contributions, his energy, and his inspiration. Finally, it is a pleasure to express very special thanks to Hendrik Lenstra, for pointing it all out with endless patience and good humour. October 1990, Wieb Bosma2 Marc-Paul van der Hulst3 Department of Pure Mathematics Faculteit Wiskunde en Informatica University of Sydney Universiteit van Amsterdam Sydney Amsterdam 1 Made possible by teaching assistantships at the Department of Mathematics and a research assis- tantship at the Department of Electrical Engineering and Computer Science (supported by the National Science Foundation under Grant No. DMS-8706176). 2 Supported by the Nederlandse organisatie voor wetenschappelijk onderzoek NWO (formerly ZWO) via the Stichting Mathematisch Centrum SMC. 3 Supported by the Nederlandse organisatie voor wetenschappelijk onderzoek NWO (formerly ZWO) via the Stichting Informatica Onderzoek in Nederland SION. x I. HISTORY. 1. Terminology. 2 2. Complexity. 5 3. Trial division. 10 4. Difference of squares. 12 5. Quadratic forms. 14 6. The converse of Fermat's theorem. 18 7. Tests of Lucas-Lehmer type. 24 8. Pseudoprimes. 34 9. The Gauss sum test. 38 10. Abelian varieties. 42 11. Miscellaneous results. 49 I. History 1. Terminology 1. TERMINOLOGY. The fundamental theorem of arithmetic states that every positive integer n has a unique prime factor decomposition: n = pk(p): p Yprime This thesis is concerned with a problem that arises when one tries to find prime factor decompositions. In finding such factorizations, three steps can be recognized; these steps are applied recursively if necessary. Loosely speaking they are the following. (i) Find out whether n is prime or composite. (ii) If n is prime, prove its primality. (iii) If n is composite, find n1 and n2 in Z 2 such that n = n1n2. ≥ The second step, called primality testing, covers the field we will concern ourselves with. In this first section, we will present motivation for interest in the problem, and we will introduce the basic terminology. The rest of this chapter describes some of the historic attempts to conquer the problem, in particular in relation to the algorithm presented in the next chapters. A primality testing algorithm, or primality test for short, is an algorithm that, on input a prime number n, outputs a proof for the primality of n; if the input n is a composite number however, the algorithm need not terminate, but if it does, a proof for the compositeness of n is supplied. Thus, as was suggested in the formulation of step (ii) above, a primality test is a primality prover. This raises several questions; first of all: what is a primality proof? This is closely related to the question: what is an algorithm? We do not want to go into (interesting but distracting) details here, but content ourselves with the following.
Recommended publications
  • Classics Revisited: El´ Ements´ De Geom´ Etrie´ Algebrique´
    Noname manuscript No. (will be inserted by the editor) Classics Revisited: El´ ements´ de Geom´ etrie´ Algebrique´ Ulrich Gortz¨ Received: date / Accepted: date Abstract About 50 years ago, El´ ements´ de Geom´ etrie´ Algebrique´ (EGA) by A. Grothen- dieck and J. Dieudonne´ appeared, an encyclopedic work on the foundations of Grothen- dieck’s algebraic geometry. We sketch some of the most important concepts developed there, comparing it to the classical language, and mention a few results in algebraic and arithmetic geometry which have since been proved using the new framework. Keywords El´ ements´ de Geom´ etrie´ Algebrique´ · Algebraic Geometry · Schemes Contents 1 Introduction . .2 2 Classical algebraic geometry . .3 2.1 Algebraic sets in affine space . .3 2.2 Basic algebraic results . .4 2.3 Projective space . .6 2.4 Smoothness . .8 2.5 Elliptic curves . .9 2.6 The search for new foundations of algebraic geometry . 10 2.7 The Weil Conjectures . 11 3 The Language of Schemes . 12 3.1 Affine schemes . 13 3.2 Sheaves . 15 3.3 The notion of scheme . 20 3.4 The arithmetic situation . 22 4 The categorical point of view . 23 4.1 Morphisms . 23 4.2 Fiber products . 24 4.3 Properties of morphisms . 28 4.4 Parameter Spaces and Representable Functors . 30 4.5 The Yoneda Lemma . 33 4.6 Group schemes . 34 5 Moduli spaces . 36 5.1 Coming back to moduli spaces of curves . 36 U. Gortz¨ University of Duisburg-Essen, Fakultat¨ fur¨ Mathematik, 45117 Essen, Germany E-mail: [email protected] 2 Ulrich Gortz¨ 5.2 Deformation theory .
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • Mathematical Circus & 'Martin Gardner
    MARTIN GARDNE MATHEMATICAL ;MATH EMATICAL ASSOCIATION J OF AMERICA MATHEMATICAL CIRCUS & 'MARTIN GARDNER THE MATHEMATICAL ASSOCIATION OF AMERICA Washington, DC 1992 MATHEMATICAL More Puzzles, Games, Paradoxes, and Other Mathematical Entertainments from Scientific American with a Preface by Donald Knuth, A Postscript, from the Author, and a new Bibliography by Mr. Gardner, Thoughts from Readers, and 105 Drawings and Published in the United States of America by The Mathematical Association of America Copyright O 1968,1969,1970,1971,1979,1981,1992by Martin Gardner. All riglhts reserved under International and Pan-American Copyright Conventions. An MAA Spectrum book This book was updated and revised from the 1981 edition published by Vantage Books, New York. Most of this book originally appeared in slightly different form in Scientific American. Library of Congress Catalog Card Number 92-060996 ISBN 0-88385-506-2 Manufactured in the United States of America For Donald E. Knuth, extraordinary mathematician, computer scientist, writer, musician, humorist, recreational math buff, and much more SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications ANDREW STERRETT, JR.,Chairman Spectrum Editorial Board ROGER HORN, Chairman SABRA ANDERSON BART BRADEN UNDERWOOD DUDLEY HUGH M. EDGAR JEANNE LADUKE LESTER H. LANGE MARY PARKER MPP.a (@ SPECTRUM Also by Martin Gardner from The Mathematical Association of America 1529 Eighteenth Street, N.W. Washington, D. C. 20036 (202) 387- 5200 Riddles of the Sphinx and Other Mathematical Puzzle Tales Mathematical Carnival Mathematical Magic Show Contents Preface xi .. Introduction Xlll 1. Optical Illusions 3 Answers on page 14 2. Matches 16 Answers on page 27 3.
    [Show full text]
  • The Entropy Conundrum: a Solution Proposal
    OPEN ACCESS www.sciforum.net/conference/ecea-1 Conference Proceedings Paper – Entropy The Entropy Conundrum: A Solution Proposal Rodolfo A. Fiorini 1,* 1 Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milano, Italy; E- Mail: [email protected] * E-Mail: [email protected]; Tel.: +039-02-2399-3350; Fax: +039-02-2399-3360. Received: 11 September 2014 / Accepted: 11 October 2014 / Published: 3 November 2014 Abstract: In 2004, physicist Mark Newman, along with biologist Michael Lachmann and computer scientist Cristopher Moore, showed that if electromagnetic radiation is used as a transmission medium, the most information-efficient format for a given 1-D signal is indistinguishable from blackbody radiation. Since many natural processes maximize the Gibbs- Boltzmann entropy, they should give rise to spectra indistinguishable from optimally efficient transmission. In 2008, computer scientist C.S. Calude and physicist K. Svozil proved that "Quantum Randomness" is not Turing computable. In 2013, academic scientist R.A. Fiorini confirmed Newman, Lachmann and Moore's result, creating analogous example for 2-D signal (image), as an application of CICT in pattern recognition and image analysis. Paradoxically if you don’t know the code used for the message you can’t tell the difference between an information-rich message and a random jumble of letters. This is an entropy conundrum to solve. Even the most sophisticated instrumentation system is completely unable to reliably discriminate so called "random noise" from any combinatorially optimized encoded message, which CICT called "deterministic noise". Entropy fundamental concept crosses so many scientific and research areas, but, unfortunately, even across so many different disciplines, scientists have not yet worked out a definitive solution to the fundamental problem of the logical relationship between human experience and knowledge extraction.
    [Show full text]
  • P-Adic Class Invariants
    LMS J. Comput. Math. 14 (2011) 108{126 C 2011 Author doi:10.1112/S1461157009000175e p-adic class invariants Reinier Br¨oker Abstract We develop a new p-adic algorithm to compute the minimal polynomial of a class invariant. Our approach works for virtually any modular function yielding class invariants. The main algorithmic tool is modular polynomials, a concept which we generalize to functions of higher level. 1. Introduction Let K be an imaginary quadratic number field and let O be an order in K. The ring class field HO of the order O is an abelian extension of K, and the Artin map gives an isomorphism s Pic(O) −−! Gal(HO=K) of the Picard group of O with the Galois group of HO=K. In this paper we are interested in explicitly computing ring class fields. Complex multiplication theory provides us with a means of doing so. Letting ∆ denote the discriminant of O, it states that we have j HO = K[X]=(P∆); j where P∆ is the minimal polynomial over Q of the j-invariant of the complex elliptic curve j C=O. This polynomial is called the Hilbert class polynomial. It is a non-trivial fact that P∆ has integer coefficients. The fact that ring class fields are closely linked to j-invariants of elliptic curves has its ramifications outside the context of explicit class field theory. Indeed, if we let p denote a j prime that is not inert in O, then the observation that the roots in Fp of P∆ 2 Fp[X] are j j-invariants of elliptic curves over Fp with endomorphism ring O made computing P∆ a key ingredient in the elliptic curve primality proving algorithm [12].
    [Show full text]
  • Kummer Surfaces for Primality Testing
    Kummer surfaces for primality testing Eduardo Ru´ız Duarte & Marc Paul Noordman Universidad Nacional Aut´onoma de M´exico, University of Groningen [email protected], [email protected] Abstract We use the arithmetic of the Kummer surface associated to the Jacobian of a hyperelliptic curve to study the primality of integersof the form 4m25n 1. We providean algorithmcapable of proving the primality or compositeness of most of the− integers in these families and discuss in detail the necessary steps to implement this algorithm in a computer. Although an indetermination is possible, in which case another choice of initial parameters should be used, we prove that the probability of reaching this situation is exceedingly low and decreases exponentially with n. Keywords: Primality, Jacobians, Hyperelliptic Curves, Kummer Surface 2020 MSC: 11G25, 11Y11, 14H40, 14H45 Introduction Determining the primality of an arbitrary integer n is a fundamental problem in number theory. The first deterministic polynomial time primality test (AKS) was developed by Agrawal, Kayal and Saxena [3]. Lenstra and Pomerance in [25] proved that a variant of AKS has running time (log n)6(2+log log n)c where c isaneffectively computablereal number. The AKS algorithm has more theoretical relevance than practical. If rather than working with general integers, one fixes a sequence of integers, for example Fermat or Mersenne numbers, one can often find an algorithm to determine primality using more efficient methods; for these two examples P´epin’s and Lucas-Lehmer’s tests respectively provide fast primality tests. Using elliptic curves, in 1985, Wieb Bosma in his Master Thesis [5] found analogues of Lucas tests for elements in Z[i] or Z[ζ] (with ζ a third root of unity) by replacing the arithmetic of (Z/nZ)× with the arithmetic of elliptic curves modulo n with complex multiplication (CM).
    [Show full text]
  • ATKIN's ECPP (Elliptic Curve Primality Proving) ALGORITHM
    ATKIN’S ECPP (Elliptic Curve Primality Proving) ALGORITHM OSMANBEY UZUNKOL OCTOBER 2004 ATKIN’S ECPP (Elliptic Curve Primality Proving ) ALGORITHM A THESIS SUBMITTED TO DEPARTMENT OF MATHEMATICS OF TECHNICAL UNIVERSITY OF KAISERSLAUTERN BY OSMANBEY UZUNKOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF MATHEMATICS October 2004 abstract ATKIN’S ECPP ALGORITHM Uzunkol, Osmanbey M.Sc., Department of Mathematics Supervisor: Prof. Dr. Gerhard Pfister October 2004, cxxiii pages In contrast to using a strong generalization of Fermat’s theorem, as in Jacobi- sum Test, Goldwasser and Kilian used some results coming from Group Theory in order to prove the primality of a given integer N ∈ N. They developed an algorithm which uses the group of rational points of elliptic curves over finite fields. Atkin and Morain extended the idea of Goldwasser and Kilian and used the elliptic curves with CM (complex multiplication) to obtain a more efficient algorithm, namely Atkin’s ECPP (elliptic curve primality proving) Algorithm. Aim of this thesis is to introduce some primality tests and explain the Atkin’s ECPP Algorithm. Keywords: Cryptography, Algorithms, Algorithmic Number Theory. ii oz¨ Herg¨unbir yere konmak ne g¨uzel, Bulanmadan donmadan akmak ne ho¸s, D¨unleberaber gitti canca˘gızım! Ne kadar s¨ozvarsa d¨uneait, S¸imdi yeni ¸seylers¨oylemeklazım... ...............Mevlana Celaleddini’i Rumi............... iii I would like to thank first of all to my supervisor Prof. Dr . Gerhard Pfister for his help before and during this work. Secondly, I would like to thank also Hans Sch¨onemann and Ra¸sitS¸im¸sekfor their computer supports in computer algebra system SINGULAR and programming language C++, respectively.
    [Show full text]
  • Constructive and Computational Aspects of Cryptographic Pairings
    Constructive and Computational Aspects of Cryptographic Pairings Michael Naehrig Constructive and Computational Aspects of Cryptographic Pairings PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 7 mei 2009 om 16.00 uur door Michael Naehrig geboren te Stolberg (Rhld.), Duitsland Dit proefschrift is goedgekeurd door de promotor: prof.dr. T. Lange CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Naehrig, Michael Constructive and Computational Aspects of Cryptographic Pairings / door Michael Naehrig. – Eindhoven: Technische Universiteit Eindhoven, 2009 Proefschrift. – ISBN 978-90-386-1731-2 NUR 919 Subject heading: Cryptology 2000 Mathematics Subject Classification: 94A60, 11G20, 14H45, 14H52, 14Q05 Printed by Printservice Technische Universiteit Eindhoven Cover design by Verspaget & Bruinink, Nuenen c Copyright 2009 by Michael Naehrig Fur¨ Lukas und Julius Promotor: prof.dr. T. Lange Commissie: prof.dr.dr.h.c. G. Frey (Universit¨at Duisburg-Essen) prof.dr. M. Scott (Dublin City University) prof.dr.ir. H.C.A. van Tilborg prof.dr. A. Blokhuis prof.dr. D.J. Bernstein (University of Illinois at Chicago) prof.dr. P.S.L.M. Barreto (Universidade de S˜ao Paulo) Alles, was man tun muss, ist, die richtige Taste zum richtigen Zeitpunkt zu treffen. Johann Sebastian Bach Thanks This dissertation would not exist without the help, encouragement, motivation, and company of many people. I owe much to my supervisor, Tanja Lange. I thank her for her support; for all the efforts she made, even in those years, when I was not her PhD student; for taking care of so many things; and for being a really good supervisor.
    [Show full text]
  • Elliptic Curves: Number Theory and Cryptography
    Elliptic Curves Number Theory and Cryptography Second Edition © 2008 by Taylor & Francis Group, LLC DISCRETE MATHEMATICS ITS APPLICATIONS !-%!. %/*- !))!/$ *.!)$ -*!'#**-*)/-* 0/%*)/** %)#$!*-4 *'#'%'",*#'#*-%/$(%*(%)/*-%.*)-/%'*- . -'("(''!-+))%)#-!!.) +/%(%5/%*)-*'!(. "*%&(+"*%&#+ )0(!-/%1!*(%)/*-%. '*#("' *"* *1,% ) **&*" ''%+/%) 4+!-!''%+/%0-1!-4+/*#-+$4 "*%+(%(-*'' *1 #'#,2 ) **&*"*(%)/*-%' !.%#).!*) %/%*) *,#' *#$+(''',"('122')/-* 0/%*)/*0(!-$!*-4 ,.' -*#'(#'!#('#'0#'!#' -(!.) !.*'1'! !.%#)..!. *)./-0/%*).) 3%./!)! '1 (%*!''#$-/%' ) **&*"+!!$* !-. ( ((&''(+)"4(-*$ ) **&*" %.-!/!) *(+0//%*)' !*(!/-4 !*) %/%*) (',"' *(++*(%)/*-%'!/$* .2%/$*(+0/!-++'%/%*). (',"' *(++'1%%' -+$$!*-4) /.++'%/%*).!*) %/%*) (',"' *(++'1%%' ) **&*" -+$$!*-4 **% '$*+(' *! **#+',*("'+(')/-* 0/%*)/*)"*-(/%*) $!*-4) /*(+-!..%*)!*) %/%*) *1% *&+#*(+%.*,2%"*%+(%(-*''("'.#,,!/2*-&!'%%'%/4 3+!-%(!)/.2%/$4(*'%'#!- )1%-*)(!)/ +%# (!' ) **&*"%)!-'#!- *$ (%,/#,",,#' #$' &(''4*#' ) **&*"*(+0//%*)' -*0+$!*-4 .#$+(''**1 #+',#')/'.*"(''!-+.%)-%!)/'!) *)*-%!)/'!0-"!. #"* %#&#% #!&('' *'+,,#,2#'!*++'%/%*).*"./-/'#!- 2%/$+'!7) 6!*) %/%*) ,*#$'-))'&#2%*#!-%"%/%*)*"*(+0/!-* !.%)*(+0//%*)'%!)! ) )#%)!!-%)# © 2008 by Taylor & Francis Group, LLC Continued Titles #%%#&(1'('%*"* -+$.'#*-%/$(.) +/%(%5/%*) ('%*"*'(-!%+,#'+('*(%)/*-%''#*-%/$(. !)!-/%*) )0(!-/%*) ) !-$ "*%+#''*'"*#+,()"*(!*+ !.%#)$!*-4 '!-1%--4*" -+$'#*-%/$(.) +/%(%5/%*) % *'2+-%.'(*+"(,'(,,'+,(' ) **&*"++'%! -4+/*#-+$4 #"*(%%#''#!-%0(!-$!*-4 #"*(%%#'* !.$! 0% !/*!-!4"-*()%!)//** !-)%(!. #"*(%%#' 0) (!)/'0(!-$!*-42%/$++'%/%*).!*)
    [Show full text]
  • Deterministic Elliptic Curve Primality Provingfor a Special Sequence Of
    THE OPEN BOOK SERIES 1 ANTS X Proceedings of the Tenth Algorithmic Number Theory Symposium Deterministic elliptic curve primality proving for a special sequence of numbers Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, and Angela Wong msp THE OPEN BOOK SERIES 1 (2013) Tenth Algorithmic Number Theory Symposium msp dx.doi.org/10.2140/obs.2013.1.1 Deterministic elliptic curve primality proving for a special sequence of numbers Alexander Abatzoglou, Alice Silverberg, Andrew V. Sutherland, and Angela Wong We give a deterministic algorithm that very quickly proves the primality or com- positeness of the integers N in a certain sequence, using an elliptic curve E=Q with complex multiplication by the ring of integers of Q.p 7/. The algorithm uses O.log N/ arithmetic operations in the ring Z=N Z, implying a bit complex- ity that is quasiquadratic in log N . Notably, neither of the classical “N 1” or “N 1” primality tests apply to the integers in our sequence. We discuss how this C algorithm may be applied, in combination with sieving techniques, to efficiently search for very large primes. This has allowed us to prove the primality of several integers with more than 100,000 decimal digits, the largest of which has more than a million bits in its binary representation. At the time it was found, it was the largest proven prime N for which no significant partial factorization of N 1 or N 1 is known (as of final submission it was second largest). C 1. Introduction With the celebrated result of Agrawal, Kayal, and Saxena[3], one can now un- equivocally determine the primality or compositeness of any integer in determinis- tic polynomial time.
    [Show full text]
  • The Entropy Conundrum: a Solution Proposal
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Archivio istituzionale della ricerca - Politecnico di Milano OPEN ACCESS www.sciforum.net/conference/ecea-1 Conference Proceedings Paper – Entropy The Entropy Conundrum: A Solution Proposal Rodolfo A. Fiorini 1,* 1 Politecnico di Milano, Department of Electronics, Information and Bioengineering, Milano, Italy; E- Mail: [email protected] * E-Mail: [email protected]; Tel.: +039-02-2399-3350; Fax: +039-02-2399-3360. Received: 11 September 2014 / Accepted: 11 October 2014 / Published: 3 November 2014 Abstract: In 2004, physicist Mark Newman, along with biologist Michael Lachmann and computer scientist Cristopher Moore, showed that if electromagnetic radiation is used as a transmission medium, the most information-efficient format for a given 1-D signal is indistinguishable from blackbody radiation. Since many natural processes maximize the Gibbs- Boltzmann entropy, they should give rise to spectra indistinguishable from optimally efficient transmission. In 2008, computer scientist C.S. Calude and physicist K. Svozil proved that "Quantum Randomness" is not Turing computable. In 2013, academic scientist R.A. Fiorini confirmed Newman, Lachmann and Moore's result, creating analogous example for 2-D signal (image), as an application of CICT in pattern recognition and image analysis. Paradoxically if you don’t know the code used for the message you can’t tell the difference between an information-rich message and a random jumble of letters. This is an entropy conundrum to solve. Even the most sophisticated instrumentation system is completely unable to reliably discriminate so called "random noise" from any combinatorially optimized encoded message, which CICT called "deterministic noise".
    [Show full text]
  • The Smallest Inert Prime in a Cyclic Number Field of Prime Degree
    Math: Res: Lett: 18 (2011), no: 00, 10001{10017 c International Press 2011 THE SMALLEST INERT PRIME IN A CYCLIC NUMBER FIELD OF PRIME DEGREE Paul Pollack Abstract. Fix an odd prime `. For each cyclic extension K=Q of degree `, let nK denote the least rational prime which is inert in K, and let rK be the least rational prime which splits completely in K. We show that nK possesses a finite mean value, where the average is taken over all such K ordered by conductor. As an example (` = 3), the average least inert prime in a cyclic cubic field is approximately 2:870. We conjecture that rK also has a finite mean value, and we prove this assuming the Generalized Riemann Hypothesis. For the case ` = 3, we give an unconditional proof that the average of rK exists and is about 6:862. 1. Introduction For each odd prime p, let n2(p) denote the least quadratic nonresidue modulo p. In 1961, Erd}os[9] showed that n2(p) possesses a finite mean value. More precisely, with pk denoting the kth prime in the usual increasing order, Erd}osproved that 1 1 X X pk n (p) ! ; as x ! 1: π(x) 2 2k 2<p≤x k=1 The infinite series on the right-hand side converges rapidly to about 3:675. Erd}os's result was generalized by Elliott: For each prime p ≡ 1 (mod k), let nk(p) denote the least kth power nonresidue modulo p; for p 6≡ 1 (mod k), set nk(p) = 0. Answering a question of Erd}os,Elliott showed [6] that nk(p) possesses a finite mean value for every k.
    [Show full text]