Model-Based Systems Engineering in Support of Complex Systems Development

Total Page:16

File Type:pdf, Size:1020Kb

Model-Based Systems Engineering in Support of Complex Systems Development Model-Based Systems Engineering in Support of Complex Systems Development J. Stephen Topper and Nathaniel C. Horner odel-based systems engineering techniques facilitate complex system design and docu- mentation processes. A rigorous, iterative conceptual development process based on the Unified Modeling Language (UML) or the Systems Modeling Language (SysML) and consisting of domain modeling, use case development, and behavioral and structural modeling supports design, architect- ing, analysis, modeling and simulation, test and evaluation, and program management activities. The resulting model is more useful than traditional documentation because it represents structure, data, and functions, along with associated documentation, in a multidimensional, navigable format. Beyond benefits to project documentation and stakeholder communication, UML- and SysML-based models also support direct anal- ysis methods, such as functional thread extraction. The APL team is continuing to develop analysis techniques using conceptual models to reduce the risk of design and test errors, reduce costs, and improve the quality of analysis and supporting modeling and simulation activities in the development of complex systems. INTRODUCTION A team from APL has been using model-based sys- net-centric operations and warfare domain, which has tems engineering (MBSE) methods within a conceptual proven particularly challenging to the modeling, simula- modeling process to support and unify activities related tion, and analysis community because of its complexity, to system-of-systems architecture development; model- information richness, and broad scope. ing, simulation, and analysis efforts; and system capabil- In particular, the APL team has used MBSE tech- ity trade studies. These techniques have been applied to niques to provide structured models of complex systems support analysis of complex systems, particularly in the incorporating input from multiple diverse stakeholders JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) 419 J. S. TOPPER AND N. C. HORNER to support understanding of critical components, inter- • Structural model: This specification of system struc- faces, and processes of these systems, and to document ture allocates attributes and operations to system explicit traceability between analytical needs and the components, expanding and adding detail to the simulations designed to meet them. domain model. This article provides an overview of the conceptual The process is shown in Fig. 1 and is described in modeling process used to support these goals, presents more detail below. a simple example to illustrate the process, and explains The conceptual modeling process provides an essen- some of the analytical techniques that can be applied tial foundation as a project moves from problem space to directly to such models. It concludes with a discussion of solution space. In the early stages, the domain models the broader benefits of this approach. and use cases provide a basis for analyzing needs and identifying problem parameters. Once the concept space is modeled, possible solutions can be developed during OVERVIEW OF THE CONCEPTUAL MODELING creative synthesis in the configuration space. PROCESS Finally, each configuration is evaluated using an applicable analysis process. It is during this evaluation In brief, a conceptual model is a complete, coherent step, not before, that M&S or another analysis meth- representation of a system and its operating domain, odology is carried out based on what has been learned including interactions with other systems and with its and specified during the previous iteration of the con- environment, that is common across the stakeholder ceptual development cycle. The results of this evaluation community. Conceptual models are created to docu- are then reflected in alterations to the conceptual model ment and understand a problem and its context and during a subsequent iteration; the cycle is repeated as to provide a foundation for developing and analyzing many times as is necessary to develop a robust solution potential solutions—regardless of the method for that (e.g., a final system design or an M&S architecture). analysis, which may or may not include modeling and Ultimately, the process provides a coherent view of a simulation (M&S). system and its domain that can be used (and reused) as The general goal behind conceptual modeling is to a basis for analysis of the system configuration, behavior, establish a framework that facilitates understanding of and alternatives. It can also form the basis for software the problem space, synthesis of possible solutions, and model design in the event that an M&S effort is desired. analysis of those identified solutions. The process devel- The process helps project stakeholders transform oped and used to build the conceptual model involves informal descriptions of systems into formalized, com- creating the following artifacts: plete documentation. Each step produces output that • Domain model: This artifact describes what the provides traceability from the final product back to ini- system and its environment are—it captures the tial descriptions and assumptions. The process forces high-level components of the system and its oper- domain understanding before design, evaluation, and ating environment and establishes the normalized development. referential framework particularly important for multidisciplined stakeholder organizations. Guiding Principles Several overarching principles guide the conceptual • Use cases: These written descriptions of what the modeling process. system will do capture its expected behaviors and its interactions with external actors. Breadth-First Development (or, Scope Before Fidelity) • Functional model: The functional model describes Scope is defined as the area within the boundaries how the system will accomplish its goals—it breaks of the problem space. Fidelity is defined as the level of the use cases into greater detail and shows activity detail incorporated into the modeling or analysis activi- flows and state transitions among components. Com- ties associated with the problem. The modeling process plex functionality, an increasingly common char- dictates a breadth-first approach in which the scope is acteristic of modern systems, is difficult to address covered comprehensively before fidelity is addressed. using traditional assessment techniques. In conjunc- This mandate forces designers and analysts to thor- tion with other artifacts presented in this section, oughly and objectively define the problem domain scope new techniques, outlined in the Functional Thread and prevents “jumping ahead” to selection of a particular Analysis section, enable and enhance analysis, test- analysis methodology, development of simulation tools, ing, and evaluation of complex systems, which are or premature conclusions. difficult to assess using traditional analytical meth- We first capture the entire domain at a high level of odologies and tools. abstraction and then drill down into more detail where 420 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 32, NUMBER 1 (2013) MODEL-BASED SYSTEMS ENGINEERING IN SYSTEMS DEVELOPMENT The How the components system’s collaborate to accomplish goals system goals Realization Behavioral diagrams Use cases (particularization) (activity and state, with class mappings) Operator Parameter Creative identication synthesis Structural diagrams Problem (class and block diagrams) Solution space x y z space Domain models x ya yb yc y Concept Conguration Evaluation z space space How individual components support system The components of the goals: system and its specication for environment Abstraction attributes and (generalization) operations Needs and area analysis Solutions analysis Figure 1. Conceptual modeling process and the systems development process. (Some concepts in this diagram are adapted from Ref. 1.) such detail is necessitated by the problem. This approach stand the context of their use. A development strategy fulfills several important roles. First, by scoping the based on the conceptual modeling practices described problem before developing fidelity, it ensures that effort in this article places emphasis on ensuring that cur- and resources are not wasted on work that does not con- rent work will remain relevant and useful for future tribute to the current task (i.e., work that falls outside projects. Processes should be well defined, documented, the problem scope). Second, it ensures that no pertinent and repeatable, products should be reusable and extend- areas of the domain are ignored. A project that moves able, and analysis results should add to the general body too quickly toward detailed analysis of the most acces- of knowledge used in future studies. This philosophy sible elements in the problem space risks ignoring sig- means that, again, projects are started at a more gen- nificant elements at the periphery of the domain. Each eral level than they would be if they were aimed at a element in the domain outside of the problem scope single-use solution, but these generic initial outputs pro- should be placed there explicitly after consideration, not vide a common starting point for future work and reduce excluded by default. Third, the approach establishes a duplication of effort. Defined, repeatable processes also basic understanding of the problem domain composition reduce project scope, schedule, and resources required at the beginning of the effort that, through extension, for future
Recommended publications
  • Filling the Gap Between Business Process Modeling and Behavior Driven Development
    Filling the Gap between Business Process Modeling and Behavior Driven Development Rogerio Atem de Carvalho Rodrigo Soares Manhães Fernando Luis de Carvalho e Silva Nucleo de Pesquisa em Sistemas de Informação (NSI), Instituto Federal Fluminense (IFF), Brazil {ratem, rmanhaes, [email protected]} 1. Introduction Behavior Driven Development (NORTH, 2006) is a specification technique that is growing in acceptance in the Agile methods communities. BDD allows to securely verify that all functional requirements were treated properly by source code, by connecting the textual description of these requirements to tests. On the other side, the Enterprise Information Systems (EIS) researchers and practitioners defends the use of Business Process Modeling (BPM) to, before defining any part of the system, perform the modeling of the system's underlying business process. Therefore, it can be stated that, in the case of EIS, functional requirements are obtained by identifying Use Cases from the business process models. The aim of this paper is, in a narrower perspective, to propose the use of Finite State Machines (FSM) to model business process and then connect them to the BDD machinery, thus driving better quality for EIS. In a broader perspective, this article aims to provoke a discussion on the mapping of the various BPM notations, since there isn't a real standard for business process modeling (Moller et al., 2007), to BDD. Firstly a historical perspective of the evolution of previous proposals from which this one emerged will be presented, and then the reasons to change from Model Driven Development (MDD) to BDD will be presented also in a historical perspective.
    [Show full text]
  • Sysml Distilled: a Brief Guide to the Systems Modeling Language
    ptg11539604 Praise for SysML Distilled “In keeping with the outstanding tradition of Addison-Wesley’s techni- cal publications, Lenny Delligatti’s SysML Distilled does not disappoint. Lenny has done a masterful job of capturing the spirit of OMG SysML as a practical, standards-based modeling language to help systems engi- neers address growing system complexity. This book is loaded with matter-of-fact insights, starting with basic MBSE concepts to distin- guishing the subtle differences between use cases and scenarios to illu- mination on namespaces and SysML packages, and even speaks to some of the more esoteric SysML semantics such as token flows.” — Jeff Estefan, Principal Engineer, NASA’s Jet Propulsion Laboratory “The power of a modeling language, such as SysML, is that it facilitates communication not only within systems engineering but across disci- plines and across the development life cycle. Many languages have the ptg11539604 potential to increase communication, but without an effective guide, they can fall short of that objective. In SysML Distilled, Lenny Delligatti combines just the right amount of technology with a common-sense approach to utilizing SysML toward achieving that communication. Having worked in systems and software engineering across many do- mains for the last 30 years, and having taught computer languages, UML, and SysML to many organizations and within the college setting, I find Lenny’s book an invaluable resource. He presents the concepts clearly and provides useful and pragmatic examples to get you off the ground quickly and enables you to be an effective modeler.” — Thomas W. Fargnoli, Lead Member of the Engineering Staff, Lockheed Martin “This book provides an excellent introduction to SysML.
    [Show full text]
  • Matters of (Meta-) Modeling
    Appeared in the Journal on Software and Systems Modeling, Volume 5, Number 4, pp. 369-385, December 2006 Matters of (Meta-) Modeling Thomas Kuh¨ ne Darmstadt University of Technology, Darmstadt, Germany e-mail: [email protected] Abstract With the recent trend to model driven engineering ontologies for the basic terms of their discipline, any com- a common understanding of basic notions such as “model” munication may create the illusion of agreement where there and “metamodel” becomes a pivotal issue. Even though these is none, i.e., unnoticed misunderstandings, and raise barriers notions have been in widespread use for quite a while, there of communication where they are just accidental. is still little consensus about when exactly it is appropriate In the following we will focus on the term “model” in the to use them. The aim of this article is to start establishing a context of model driven engineering. Our models are thus all consensus about generally acceptable terminology. Its main language-based in nature, unlike, e.g., physical scale models contributions are the distinction between two fundamental- and they describe something as opposed to models in mathe- ly different kinds of model roles, i.e. “token model” versus matics which are understood as interpretations of a theory [3]. “type model”1, a formal notion of “metaness”, and the consi- In an attempt to define the scope of the notion “model” we deration of “generalization” as yet another basic relationship should consider how it has been traditionally used in softwa- between models. In particular, the recognition of the funda- re engineering.
    [Show full text]
  • Introduction to Systems Modeling Languages
    Fundamentals of Systems Engineering Prof. Olivier L. de Weck, Mark Chodas, Narek Shougarian Session 3 System Modeling Languages 1 Reminder: A1 is due today ! 2 3 Overview Why Systems Modeling Languages? Ontology, Semantics and Syntax OPM – Object Process Methodology SySML – Systems Modeling Language Modelica What does it mean for Systems Engineering of today and tomorrow (MBSE)? 4 Exercise: Describe the “Mr. Sticky” System Work with a partner (5 min) Use your webex notepad/white board I will call on you randomly We will compare across student teams © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 5 Why Systems Modeling Languages? Means for describing artifacts are traditionally as follows: Natural Language (English, French etc….) Graphical (Sketches and Drawings) These then typically get aggregated in “documents” Examples: Requirements Document, Drawing Package Technical Data Package (TDP) should contain all info needed to build and operate system Advantages of allowing an arbitrary description: Familiarity to creator of description Not-confining, promotes creativity Disadvantages of allowing an arbitrary description: Room for ambiguous interpretations and errors Difficult to update if there are changes Handoffs between SE lifecycle phases are discontinuous Uneven level of abstraction Large volume of information that exceeds human cognitive bandwidth Etc…. 6 System Modeling Languages Past efforts
    [Show full text]
  • Integration of Model-Based Systems Engineering and Virtual Engineering Tools for Detailed Design
    Scholars' Mine Masters Theses Student Theses and Dissertations Spring 2011 Integration of model-based systems engineering and virtual engineering tools for detailed design Akshay Kande Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Systems Engineering Commons Department: Recommended Citation Kande, Akshay, "Integration of model-based systems engineering and virtual engineering tools for detailed design" (2011). Masters Theses. 5155. https://scholarsmine.mst.edu/masters_theses/5155 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. INTEGRATION OF MODEL-BASED SYSTEMS ENGINEERING AND VIRTUAL ENGINEERING TOOLS FOR DETAILED DESIGN by AKSHA Y KANDE A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN SYSTEMS ENGINEERING 2011 Approved by Steve Corns, Advisor Cihan Dagli Scott Grasman © 2011 Akshay Kande All Rights Reserved 111 ABSTRACT Design and development of a system can be viewed as a process of transferring and transforming data using a set of tools that form the system's development environment. Conversion of the systems engineering data into useful information is one of the prime objectives of the tools used in the process. With complex systems, the objective is further augmented with a need to represent the information in an accessible and comprehensible manner.
    [Show full text]
  • System-Of-Systems Approach for Integrated Energy Systems
    A System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation Preprint Saurabh Mittal, Mark Ruth, Annabelle Pratt, Monte Lunacek, Dheepak Krishnamurthy, and Wesley Jones National Renewable Energy Laboratory Presented at the Society for Modeling & Simulation International Summer Simulation Multi-Conference Chicago, Illinois July 26–29, 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Conference Paper NREL/CP-2C00-64045 August 2015 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]
  • Complexity Evaluation with Business Process Modeling and Simulation
    Complexity Evaluation with Business Process Modeling and Simulation Krishan Chand and Muthu Ramachandran School of Computing, Creative Technologies and Engineering, Leeds Beckett University, Leeds, U.K. Keywords: Business Process Modeling, BPMN, Simulation, Complexity. Abstract: To stay in the competition and to make a stand in the market, companies have to make the quick changes. Business Process Modelling (BPM) has made an impact in the respect to capture the process and to make the changes accordingly for improvement in business operations. Modeling and simulation is the process of making a process simple to reduce complexity. However, modellers or researchers still making the complex models. Modeling and simulation are the areas which need to be addressed, despite only a few researchers worked in the respective areas of modelling and simulation. The paper addresses the complexity issue of cloud performance criteria of time and cost. To this end, this paper has evaluated the domain of financial services in the cloud with Business Process Modeling Notation (BPMN) and simulation. Two different scenarios have been created to demonstrate the result of performance complexity of cloud services. Finally, the conclusion has been derived to help and guide further research. 1 INTRODUCTION of a process directed to make it with fewer efforts, accordingly to ease the complexity of the business Due to its existence importance not because of process and to make it simple and understanding. However, the main objective of the process modeller descriptive nature of the process, but also the is to make the process understanding and to reduce characteristics representation for the activities such as business process improvement, business process the complexity in the practical world, are designing the complex models (Henriksen, 2008; Chwif et al., re-engineering and process standardization, business 2000).
    [Show full text]
  • Modeling: Web- and Cloud-Based Collaborative Tool Infrastructure
    Next Generation (Meta)Modeling: Web- and Cloud-based Collaborative Tool Infrastructure Mikl´osMar´oti2, Tam´asKecsk´es1, R´obert Keresk´enyi1, Brian Broll1, P´eter V¨olgyesi1, L´aszl´oJur´acz,Tiham´erLevendoszky1, and Akos´ L´edeczi1 1 Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA [email protected] 2 Bolyai Institute, University of Szeged, Szeged, Hungary [email protected] Abstract. The paper presents WebGME, a novel, web- and cloud-based, collaborative, scalable (meta)modeling tool that supports the design of Domain Specific Modeling Languages (DSML) and the creation of cor- responding domain models. The unique prototypical inheritance, origi- nally introduced by GME, is extended in WebGME to fuse metamodel- ing with modeling. The tool also introduces novel ways to model cross- cutting concerns. These concepts are especially useful for multi-paradigm modeling. The main design drivers for WebGME have been scalability, extensibility and version control. The web-based architecture and the constraints the browser-based environment introduces provided signif- icant challenges that WebGME has overcome with balanced trade-offs. The paper describes the architecture of WebGME, argues why the major design decisions were taken and presents the novel features of the tool. Keywords: DSML, metamodel, collaboration, web browser 1 Introduction Applying Domain-Specific Modeling Languages (DSMLs) for the engineering of complex systems is becoming an increasingly accepted practice. Model In- tegrated Computing (MIC) is one approach that advocates the use of DSMLs and metamodeling tools [1]. The MIC open source toolsuite centered on the Generic Modeling Environment (GME) [2] has been applied successfully in a broad range of domains by Vanderbilt [3–7] and others [8–13].
    [Show full text]
  • Model-Based Systems Engineering Method for Creating Secure Systems
    applied sciences Article MBSEsec: Model-Based Systems Engineering Method for Creating Secure Systems Donatas Mažeika * and Rimantas Butleris Centre of Information Systems Design Technologies, Kaunas University of Technology, LT-51423 Kaunas, Lithuania; [email protected] * Correspondence: [email protected]; Tel.: +37-06-741-2899 Received: 24 March 2020; Accepted: 6 April 2020; Published: 9 April 2020 Abstract: This paper presents how Model-Based System Engineering (MBSE) could be leveraged in order to mitigate security risks at an early stage of system development. Primarily, MBSE was used to manage complex engineering projects in terms of system requirements, design, analysis, verification, and validation activities, leaving security aspects aside. However, previous research showed that security requirements and risks could be tackled in the MBSE model, and powerful MBSE tools such as simulation, change impact analysis, automated document generation, validation, and verification could be successfully reused in the multidisciplinary field. This article analyzes various security-related techniques and then clarifies how these techniques can be represented in the Systems Modeling Language (SysML) model and then further exploited with MBSE tools. The paper introduces the MBSEsec method, which gives guidelines for the security analysis process, the SysML/UML-based security profile, and recommendations on what security technique is needed at each security process phase. The MBSEsec method was verified by creating an application case
    [Show full text]
  • A Simplified Sysml-Based Approach for Modeling Complex Systems
    MBSE Grid: A Simplified SysML-Based Approach for Modeling Complex Systems Aurelijus Morkevicius Aiste Aleksandraviciene No Magic Europe and Kaunas University of No Magic Europe Technology Kaunas, LT-51480, Lithuania Kaunas, LT-51480, Lithuania [email protected] [email protected] Donatas Mazeika Lina Bisikirskiene No Magic Europe and Kaunas University of No Magic Europe and Kaunas University of Technology Technology Kaunas, LT-51480, Lithuania Kaunas, LT-51480, Lithuania [email protected] [email protected] Zilvinas Strolia No Magic Europe Kaunas, LT-51480, Lithuania [email protected] Copyright © 2017 by Aurelijus Morkevicius, Aiste Aleksandraviciene, Donatas Mazeika, Lina Bisikirskiene, Zilvinas Strolia. Abstract. After an organization makes the decision to adopt model-based systems engineering (MBSE), it must go a long way before this decision proves right. There are many obstacles in this way, like stories about unsuccessful MBSE applications, insufficient information on how to proceed, and employee resistance to the cultural change to name a few. Neither of them is a true issue, if suitable enablers for MBSE adoption are chosen. Nowadays, MBSE is enabled by Systems Modeling Language (SysML). However, SysML is neither a framework nor a method: it provides no information about the modeling process and thus must be combined with some methodology to become truly applicable. This paper summarizes the experience of various MBSE adoption projects in the form of a new approach for MBSE. The approach is based on the framework organized in a matrix view and is designated to guide system engineers through the modeling process and help them answer the questions, like how to start, how to structure the model, what views to build, which artefacts to deliver, and in what sequence.
    [Show full text]
  • Constructing True Model-Based Requirements in Sysml
    systems Article Constructing True Model-Based Requirements in SysML Alejandro Salado * and Paul Wach Virginia Tech, Blacksburg, VA 24061, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-540-231-0483 Received: 5 February 2019; Accepted: 26 March 2019; Published: 28 March 2019 Abstract: Some authors suggest that transitioning requirements engineering from the traditional statements in natural language with shall clauses to model-based requirements within a Model-Based Systems Engineering (MBSE) environment could improve communication, requirements traceability, and system decomposition, among others. Requirement elements in the Systems Modeling Language (SysML) fail to fulfill this objective, as they are really a textual requirement in natural language as a model element. Current efforts to directly leverage behavioral and structural models of the system lack an overarching theoretical framework with which to assess the adequacy of how those models are used to capture requirements. This paper presents an approach to construct true model-based requirements in SysML. The presented approach leverages some of SysML’s behavioral and structural models and diagrams, with specific construction rules derived from Wymore’s mathematical framework for MBSE and taxonomies of requirements and interfaces. The central proposition of the approach is that every requirement can be modeled as an input/output transformation. Examples are used to show how attributes traditionally thought of as non-functional requirements can be captured, with higher precision, as functional transformations. Keywords: requirements; model-based requirements; model-based systems engineering (MBSE); System Modeling Language (SysML) 1. Introduction Problem formulation, traditionally in the form of requirements, is considered by some authors to be the cornerstone of systems engineering [1].
    [Show full text]
  • Model-Based Systems Engineering (MBSE) Data Interoperability Problem Statement, Assessment, and Go Forward Plan
    Model-Based Systems Engineering (MBSE) Data Interoperability Problem Statement, Assessment, and Go Forward Plan AD PAG Position Paper Release 1.0 January 2019 MBSE Data Interoperability – Problem Statement, Assessment, and Go Forward Plan Table of Contents Revision Record ............................................................................................................................... 2 Executive Summary .......................................................................................................................... 3 Introduction ....................................................................................................................................... 3 Motivation for Investment ........................................................................................................................................... 4 Goal and Approach..................................................................................................................................................... 5 Purpose of This Document ......................................................................................................................................... 5 Note on Authorship and Endorsement ....................................................................................................................... 6 Problem Statement ........................................................................................................................... 6 Context ......................................................................................................................................................................
    [Show full text]