Design of Spiral Antenna Array

Total Page:16

File Type:pdf, Size:1020Kb

Design of Spiral Antenna Array DESIGN OF SPIRAL ANTENNA ARRAY AND COMMUNICATION SYSTEM FOR X-BAND CUBESAT IN LUNAR ORBIT by KATELYN ROSE ISBELL YANG-KI HONG, COMMITTEE CHAIR STEPHEN J. YAN SEVGI GURBUZ RICHARD D. BRANAM A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Electrical and Computer Engineering in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2020 Copyright Katelyn Rose Isbell 2020 ALL RIGHTS RESERVED ABSTRACT Recent advancements in the design of CubeSats, a type of nanosatellite, have allowed missions to include lunar, asteroid, and planetary destinations. Communication for deep space CubeSats poses new challenges for researchers in terms of transmitting and receiving range capabilities, reliability, and power and size limitations. An X-band downlink communication system is designed to address link budget and CubeSat system requirements for a lunar orbit. An Archimedean spiral antenna array backed by a novel sloped wall cavity and fed with a Klopfenstein impedance taper and power splitter is designed and characterized. An X-band transmitter is designed to fulfill the link budget and is analyzed for RF performance. ii DEDICATION This thesis is dedicated to my parents for their endless support. iii LIST OF ABBREVIATIONS AND SYMBOLS ADS Advanced Design System AR Axial Ratio AR00 Axial Ratio at Boresight ARBW Axial Ratio Beam Width ASA Archimedean Spiral Antenna BER Bit Error Rate BPSK Binary Phase Shift Keying CBC Conventional Backing Cavity COTS Commercial Off-the-Shelf D Distance in Link Budget DAC Digital-to-Analog Converter DSN Deep Space Network DSP Digital Signal Processing Eb Energy Per Bit EM-1 Exploration Mission-1 ESA European Space Administration FCC Federal Communications Commission FPGA Field Programmable Gate Array FQPSK Feher Patented Quadrature Phase-Shift Keying iv FSPL Free Space Path Loss GMSK Gaussian Minimum Shift Keying GR Receiving Antenna Gain GT Transmitting Antenna Gain HFSS High Frequency Structure Simulator HGA High Gain Antenna HPBW Half Power Beam Width I In-Phase INSPIRE Interplanetary Nano-Spacecraft Pathfinder in Relevant Environment JPL Jet Propulsion Laboratory LEO Low Earth Orbit LGA Low Gain Antenna MarCO Mars Cube One MGA Medium Gain Antenna N0 Noise Spectral Density NASA National Air and Space Administration OQPSK Offset Quadrature Phase Shift Keying P-POD Poly-Picosatellite Orbital Deployer PR Receiving Power PSK Phase-Shift Keying PT Transmitting Power Q Quadrature QPSK Quadrature Phase Shifting Keying v R Data Rate RF Radio Frequency RG Realized Gain RG00 Realized Gain at Boresight RX Receive SCRAM Space Communication Rates At Multi-Gbps SFDR Spurious-Free Dynamic range SNR Signal to Noise Ratio SQPSK Staggered Quadrature Phase-Shift Keying SWBC Sloped-Wall Backing Cavity TS System Noise Temperature TX Transmit UHF Ultra-High Frequency VHF Very High Frequency VNA Vector Network Analyzer Z0 Initial Impedance Zin Input Impedance ZL Load Impedance εeff Effective Relative Permittivity εr Relative Permittivity Г Reflection Coefficient vi ACKNOWLEDGEMENTS I would like to thank my advisor and committee chair, Dr. Yang-Ki Hong for his guidance and support for my graduate and undergraduate research careers. I would also like to thank my committee members Dr. Stephen J. Yan, Dr. Sevgi Gurbuz, and Dr. Richard D. Branam for their help in my completion of this thesis. I am also grateful to my fellow researchers in the Magnetic Materials and Devices lab for their assistance: Dr. Woncheol Lee, Nikolaus Luhrs, Hoyun Won, Minyeong Choi, Briana Bryant, Jonathan Platt, and Leo Vanderburgh. vii CONTENTS ABSTRACT .................................................................................................................................... ii DEDICATION ............................................................................................................................... iii LIST OF ABBREVIATIONS AND SYMBOLS .......................................................................... iv ACKNOWLEDGEMENTS .......................................................................................................... vii LIST OF TABLES ......................................................................................................................... xi LIST OF FIGURES ...................................................................................................................... xii CHAPTER 1: INTRODUCTION ................................................................................................... 1 1.1 Motivation ............................................................................................................................. 1 1.2 Contributions ......................................................................................................................... 1 1.3 Organization .......................................................................................................................... 2 1.4 Publications ........................................................................................................................... 2 CHAPTER 2: LITERATURE REVIEW ........................................................................................ 5 2.1 History of CubeSats .............................................................................................................. 5 2.2 The CubeSat Standard ........................................................................................................... 7 2.3 CubeSats for Deep Space ...................................................................................................... 8 CHAPTER 3: SYSTEM OVERVIEW ......................................................................................... 12 3.1 Mission ................................................................................................................................ 12 viii 3.2 Proposed System ................................................................................................................. 12 3.3 Modulation Selection .......................................................................................................... 14 3.4 Frequency Band Selection ................................................................................................... 16 3.5 Link Budget ......................................................................................................................... 16 3.6 Bandwidth ........................................................................................................................... 19 CHAPTER 4: ANTENNA DESIGN ............................................................................................ 21 4.1 Antenna Characteristics....................................................................................................... 21 4.2 Archimedean Spiral ............................................................................................................. 22 4.2.1 Theory of Operation ..................................................................................................... 22 4.2.2 Design .......................................................................................................................... 24 4.3 Microstrip Balun ................................................................................................................. 26 4.3.1 Theory of Operation ..................................................................................................... 26 4.3.2 Design .......................................................................................................................... 27 4.3.3 Fabrication and Measurement ...................................................................................... 33 4.4 Backing Cavity .................................................................................................................... 36 4.4.1 Theory of Operation ..................................................................................................... 36 4.4.2 Design .......................................................................................................................... 37 4.5 Spiral Array ......................................................................................................................... 41 4.5.1 Design .......................................................................................................................... 41 4.5.2 Proposed 6x6 Spiral Array ........................................................................................... 43 ix 4.6 Power Splitter ...................................................................................................................... 43 4.6.1 Theory of Operation ..................................................................................................... 43 4.6.2 Design .......................................................................................................................... 44 4.7 Antenna Characterization .................................................................................................... 49 4.7.1 Fabrication Process ...................................................................................................... 49 4.7.2 Measurement Process................................................................................................... 49 4.7.3 Spiral Antennas ............................................................................................................ 51 4.7.4
Recommended publications
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • OPAG Update to the Planetary Science Advisory Committee (PAC)
    OPAG Update to the Planetary Science Advisory Committee (PAC) ? Linda Spilker OPAG Vice-Chair, JPL PAC Meeting September 24, 2019 Large KBOs: Outer Planets Assessment Group (OPAG) Charter https://www.lpi.usra.edu/opag/ • NASA's community-based forum to provide science input for planning and prioritizing outer planet exploration activities for the next several decades • Evaluates outer solar system exploration goals, objectives, investigations and required measurements on the basis of the widest possible community outreach • Meets twice per year, summer and winter – Next meeting: Feb. 3-4, 2020, LPI, Houston, TX • OPAG documents are inputs to the Decadal Surveys • OPAG and Small Bodies Assessment Group (SBAG) have Joint custody of Pluto system and other planets among Kuiper Belt Objects KBO planets OPAG Steering Committee Jeff Moore Linda Spilker OPAG Chair OPAG Vice-Chair * =New Member Ames Research Center Jet Propulsion Lab Alfred McEwen Lynnae Quick* Kathleen Mandt* University of Arizona NASA Goddard Applied Physics Laboratory OPAG Steering Committee Scott Edgington Amanda Hendrix Mark Hofstadter Jet Propulsion Lab Planetary Science Institute Jet Propulsion Lab Terry Hurford Carol Paty Goddard Space Flight Center Georgia Institute of Technology OPAG Steering Committee Morgan Cable* Britney Schmidt Kunio Sayanagi Jet Propulsion Lab Georgia Institute of Technology Hampton University * =New Member Tom Spilker* Abigail Rymer* Consultant Applied Physics Lab Recent and Upcoming OPAG-related Meetings • OPAG Subsurface Needs for Ocean Worlds
    [Show full text]
  • ICEE-2) Program Mitch Schulte, Discipline ScienSt Planetary Science Division NASA Headquarters Europa Lander SDT – Science Trace Matrix
    Instrument Concepts for Europa Exploraon (ICEE-2) Program Mitch Schulte, Discipline Scien3st Planetary Science Division NASA Headquarters Europa Lander SDT – Science Trace Matrix Instrument classes: organic compound analysis (oca), microscope for life detection (mld), vibrational spectrometer (vs), context remote sensing imager (crsi), geophysical sounding system (gss), lander infrastructure sensors for science (liss). LISS not called in ICEE-2. Note: Goal 1 has been rescoped to focus on searching for biosignatures. Europa Lander SDT – Model payload ICEE-2 Program NRA* released: 17 May 2018 Step 1 Proposals due: 22 June 2018 Change in POC: 18 July 2018 Step 2 Proposals due: 24 August 2018 Submitted Proposals: 44 Step 2 Proposals were submitted, 43 of which were compliant and reviewed Government Shutdown: 22 December 2018-25 January 2019 Awards announced: 8 February 2019 *Reminder: This was an NRA, not an AO. ICEE-2 Program • The Instrument Concepts for Europa Exploration (ICEE) 2 program supports the development of instruments and sample transfer mechanism(s) for Europa surface exploration. The goal of the program is to advance both the technical readiness and spacecraft accommodation of instruments and the sampling system for a potential future Europa lander mission. • All awardees required to collaborate with the pre-project NASA-JPL spacecraft team and potentially other awardees. • The ICEE 2 program also seeks to mature the accommodation of instruments on the lander, especially regarding the sampling system. • While specific technology readiness levels (TRL) are not prescribed for the ICEE 2 program, instrument concepts must be at TRL 6 in the 2021/2022 timeframe. ICEE-2 Program • Proposal Information Package (PIP) and Environmental Requirements Document (ERD) provided by JPL team.
    [Show full text]
  • Outer Planets Assessment Group (OPAG) View of Decadal Survey
    Outer Solar System: Many Worlds to Explore Outer Planets Assessment Group (OPAG) View of Decadal Survey Progress May 2017 Alfred McEwen, OPAG Chair LPL, University of Arizona This presentation will address (relevant to OPAG): • 1. Most important new discoveries 2011-2017 – (V&V writing was completed in late 2010) • 2. Progress made in implementing Decadal advice – Flight investigations • Flagship Missions • New Frontiers – R&A and infrastructure – Technology • 3. Other issues relevant to the committee’s statement of task – Smallsats for Outer Planet Exploration – How to make the Discovery Program useful for Outer Planets – Europa Lander – Coordination with ESA JUICE mission – Adding Ocean Worlds to New Frontiers 4 – Future mission studies to prepare for next Decadal • 4. Summary grade recommendations on Decadal progress • 5. OPAG top recommendations to mid-term review 1. Most Important New Discoveries 2011-present • Jupiter system: – Europa plate tectonics (Prockter et al., 2014) – Europa cryovolcanism (Quick et al., 2017; Prockter et al., 2017) – Europa plumes (Roth et al., 2014; Sparks et al., 2017) – Confirmation of subsurface ocean in Ganymede (Saur et al., 2015) – Evidence for extensive melt in Io’s mantle (Khurana et al., 2011; Tyler et al., 2015) – Fabulous results from Juno (papers submitted) • Saturn System: – MUCH from Cassini—see upcoming slides • Uranus and Neptune systems: – Standard interior models do not fit observations; Uranus and Neptune may be quite different (Nettelmann et al. 2013) – Intense auroras seen at Uranus (Lamy et al., 2012, 2017) – Weather on Uranus and Neptune confined to a “thin” layer (<1,000 km) (Kaspi et al. 2013) – Ice Giant growing around nearby TW Hydra (Rapson et al., 2015) – Triton’s tidal heating and possible subsurface ocean (Gaeman et al., 2012; Nimmo and Spencer, 2015) • Pluto system—lots of results from New Horizons – The Pluto system is complex in the variety of its landscapes, activity, and range of surface ages.
    [Show full text]
  • Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites
    Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27, pp. Tk_35-Tk_38, 2010 Topics Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites 1) 2) 2) 2) 3) By Sho SASAKI , Masaki FUJIMOTO , Takeshi TAKASHIMA , Hajime YANO , Yasumasa KASABA , 4) 4) 2) 2) Yukihiro TAKAHASHI , Jun KIMURA , Tatsuaki OKADA , Yasuhiro KAWAKATSU , 2) 2) 2) 2) 2) Yuichi TSUDA , Jun-ichiro KAWAGUCHI , Ryu FUNASE , Osamu MORI , Mutsuko MORIMOTO , 5) 6) 7) Masahiro IKOMA , Takeshi NAGANUMA , Atsushi YAMAJI , 8) 9) Hauke HUSSMANN , Kei KURITA and JUPITER WORKING GROUP 1)National Astronomical Observatory of Japan, Oshu, Japan 2)The Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 3)Tohoku University, Sendai, Japan 4)Hokkaido University, Sapporo, Japan 5)Tokyo Institute of Technology, Tokyo, Japan 6)Hiroshima University, Higashi-Hiroshima, Japan 7)Kyoto University, Kyoto, Japan 8)German Aerospace Center, Berlin, Germany 9)Earthquake Research Institute, The University of Tokyo, Tokyo, Japan (Received July 16th, 2009) EJSM (Europa Jupiter System Mission) is a planned Jovian system mission with three spacecraft aiming at coordinated observations of the Jovian satellites especially Europa and the magnetosphere, atmosphere and interior of Jupiter. It was formerly called "Laplace" mission. In October 2007, it was selected as one of future ESA scientific missions Cosmic Vision (2015-2025). From the beginning, Japanese group is participating in the discussion process of the mission. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetosphere Orbiter). On the other hand, ESA will take charge of JGO (Jupiter Ganymede Orbiter) and NASA will be responsible for JEO (Jupiter Europa Orbiter).
    [Show full text]
  • Valuing Life Detection Missions Edwin S
    Valuing life detection missions Edwin S. Kite* (University of Chicago), Eric Gaidos (University of Hawaii), Tullis C. Onstott (Princeton University). * [email protected] Recent discoveries imply that Early Mars was habitable for life-as-we-know-it (Grotzinger et al. 2014); that Enceladus might be habitable (Waite et al. 2017); and that many stars have Earth- sized exoplanets whose insolation favors surface liquid water (Dressing & Charbonneau 2013, Gaidos 2013). These exciting discoveries make it more likely that spacecraft now under construction – Mars 2020, ExoMars rover, JWST, Europa Clipper – will find habitable, or formerly habitable, environments. Did these environments see life? Given finite resources ($10bn/decade for the US1), how could we best test the hypothesis of a second origin of life? Here, we first state the case for and against flying life detection missions soon. Next, we assume that life detection missions will happen soon, and propose a framework (Fig. 1) for comparing the value of different life detection missions: Scientific value = (Reach × grasp × certainty × payoff) / $ (1) After discussing each term in this framework, we conclude that scientific value is maximized if life detection missions are flown as hypothesis tests. With hypothesis testing, even a nondetection is scientifically valuable. Should the US fly more life detection missions? Once a habitable environment has been found and characterized, life detection missions are a logical next step. Are we ready to do this? The case for emphasizing habitable environments, not life detection: Our one attempt to detect life, Viking, is viewed in hindsight as premature or at best uncertain. In-space life detection experiments are expensive.
    [Show full text]
  • Europa Lander
    Europa Lander Europa Lander SDT Report & Mission Concept OPAG February 22, 2017, Atlanta, GA Kevin Hand, Alison Murray, Jim Garvin & Europa Lander Team Science Definition Team Co-Chairs: Alison Murray, DRI/Univ. NV Reno, Jim Garvin, GSFC; Kevin Hand, JPL • Ken Edgett, MSSS • Sarah Horst, JHU • Bethany Ehlmann, Caltech • Peter Willis, JPL • Jonathan Lunine, Cornell • Alex Hayes, Cornell • Alyssa Rhoden, ASU • Brent Christner, Univ FL • Will Brinkerhoff, GSFC • Chris German, WHOI • Alexis Templeton, CU Boulder • Aileen Yingst, PSI • Michael Russell, JPL • David Smith, MIT • Tori Hoehler, NASA Ames • Chris Paranicas, APL • Ken Nealson, USC • Britney Schmidt, GA Tech Planetary scientists, Microbiologists, Geochemists Pre-Decisional Information — For Planning and Discussion Purposes Only 2 Europa Lander Mission Concept Key Parameters: • Lander would be launched as a separate mission. • Target launch: 2024-2025 on SLS rocket. • Battery powered mission: 20+ day surface lifetime. • Spacecraft provides 42.5 kg allocation for science payload (with reserves). • Baseline science includes: • Analyses of 5 samples, • Samples acquired from 10 cm depth or deeper (beneath radiation processed regolith) and from 5 different regions within the lander workspace, • Each sample must have a minimum volume of 7 cubic centimeters. Pre-Decisional Information — For Planning and Discussion Purposes Only Europa Lander Mission Concept Pre-Decisional Information — For Planning and Discussion Purposes Only Europa Lander Goals: A Robust Approach to Searching for Signs
    [Show full text]
  • Medium Power, Compact Periodic Spiral Antenna Jonathan O'brien University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2013 Medium Power, Compact Periodic Spiral Antenna Jonathan O'brien University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Electrical and Computer Engineering Commons Scholar Commons Citation O'brien, Jonathan, "Medium Power, Compact Periodic Spiral Antenna" (2013). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4926 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Medium Power, Compact Periodic Spiral Antenna by Jonathan M. O’Brien A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Thomas M. Weller, Ph.D. Gokhan Mumcu, Ph.D. Huseyin Arslan, Ph.D. John Grandfield, B.S.E.E. Date of Approval: November 8, 2013 Keywords: Three Dimensional Miniaturization, Ultra-Wideband Antennas, Thermal Modeling, Miniaturization Techniques, Loop Antenna Copyright © 2013, Jonathan M. O’Brien Dedication To my family My mother who never let me quit at anything My father who taught me that life isn’t a destination Joey who made me understand more about life than I could ever explain My brother for being my best competitor in school My best sister who can always make me laugh Acknowledgments Words cannot express the gratitude and respect I have for my advisor, Prof.
    [Show full text]
  • Highlights of Antenna History
    ~~ IEEE COMMUNICATIONS MAGAZINE HlOHLlOHTS OF ANTENNA HISTORY JACK RAMSAY A look at the major events in the development of antennas. wires. Antenna systems similar to Edison’s were used by A. E. Dolbear in 1882 when he successfully and somewhat mysteriously succeeded in transmitting code and even speech to significant ranges, allegedly by groundconduction. NINETEENTH CENTURY WIRE ANTENNAS However, in one experiment he actually flew the first kite T is not surprising that wire antennas were inaugurated antenna.About the same time, the Irish professor, in 1842 by theinventor of wire telegraphy,Joseph C. F. Fitzgerald, calculated that a loop would radiate and that Henry, Professor’ of Natural Philosophy at Princeton, a capacitance connected to a resistor would radiate at VHF NJ. By “throwing a spark” to a circuit of wire in an (undoubtedly due to radiation from the wire connecting leads). Iupper room,Henry found that thecurrent received in a In Hertz launched,processed, and received radio 1887 H. parallel circuit in a cellar 30 ft below codd.magnetize needies. waves systematically. He used a balanced or dipole antenna With a vertical wire from his study to the roof of his house, he attachedto ’ an induction coilas a transmitter, and a detected lightning flashes 7-8 mi distant. Henry also sparked one-turn loop (rectangular) containing a sparkgap as a to a telegraph wire running from his laboratory to his house, receiver. He obtained “sympathetic resonance” by tuning the and magnetized needles in a coil attached to a parailel wire dipole with sliding spheres, and the loop by adding series 220 ft away.
    [Show full text]
  • Europa Lander Overview and Update Steve Sell 16Th International Planetary Probe Workshop, Oxford, UK June 2019 © 2019 California Institute of Technology
    Europa Lander Overview and Update Steve Sell 16th International Planetary Probe Workshop, Oxford, UK June 2019 © 2019 California Institute of Technology. Government sponsorship acknowledged. The decision to implement the Europa Lander will not be finalized until NASA's completion of the National Environment Policy Act (NEPA) process. This document is being made available for information purposes only. Europa Lander Mission Concept as of delta-MCR (Nov. 2018) Carrier Stage • 1.5 Mrad radiation Deorbit, Descent, Landing exposure • Guided deorbit burn w/ Star-48- • Elliptical disposal orbit class solid rocket motor Cruise/Jovian Tour • Sky Crane landing system • Jupiter Orbit Insertion: L+4.7 hrs • 800N throttleable MR-104 engines • Europa Landing: JOI+2 yrs • 100-m accuracy • 0.1 m/s velocity knowledge Jupiter Arrival • Terrain-conforming landing system Jupiter Surface Mission Orbit • Biosignature Science • Excavate to 10cm, sample, and analyze cryogenic ice Earth Orbit • 22 days surface mission duration • High degree of Autonomy Launch • Direct to Earth Comm or Clipper • SLS Block 1B (contingency) Earth Gravity Assist Launch • 1.5 Gbit data return • 2.0 Mrad radiation exposure Concept Drawings • Terminal Sterilization for PP Pre-Decisional Information – For Planning and Discussion Purposes Only 2 3 Baseline Flight System Vehicles Z axis Bio-barrier Z axis (ejected) Deorbit Vehicle (DOV) Descent Stage (DS) Powered Descent + Bio- Vehicle (PDV) Barrier (fixed) + Carrier Lander Stage Z axis Cruise Vehicle (CV) Deorbit Launch Mass: ~15-16 mt
    [Show full text]
  • Book of Abstracts to Dowload
    ABSTRACT BOOK 1 TABLE OF CONTENTS Summary ........................................................................................................................................... 5 Committees ......................................................................................................................................19 Agenda ............................................................................................................................................22 List of participants ............................................................................................................................ 25 Abstracts - Day 1 - Sessions 1-2 ...............................................................................................27 Solar system-exoplanet synergies - general approach and programmatic land-scape, Rauer Heike........................................................................................................................................................................28 Horizon 2061, from overarching science goal to specific science objectives, Michel Blanc...........................................................................................................................................................................29 Formation and Orbital Evolution of Young Planetary Systems, Baruteau Clément.....31 Composition and Interior structure of solar and extrasolar giant planets, Nettelmenn Nadine [et al.].......................................................................................................................................32
    [Show full text]
  • Size Reduction of an Uwb Low-Profile Spiral Antenna
    SIZE REDUCTION OF AN UWB LOW-PROFILE SPIRAL ANTENNA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Brad A. Kramer, M.S., B.S. ***** The Ohio State University 2007 Dissertation Committee: Approved by Professor John L. Volakis, Adviser Adjunct Professor Chi-Chih Chen Adviser Associate Professor Fernando L. Teixeira Graduate Program in Electrical and Computer Engineering c Copyright by Brad A. Kramer 2007 ABSTRACT Fundamental physical limitations restrict antenna performance based on its elec- trical size alone. These fundamental limitations are of the utmost importance since the minimum size needed to achieve a particular figure of merit can be determined from them. In this dissertation, the physical limitations on the size reduction of a broadband antenna is examined theoretically and experimentally. This is in contrast to previous research that focused on narrowband antennas. Specifically, size reduction using antenna miniaturization techniques is considered and explored through the ap- plication of high-contrast material and reactive loading. A particular example is the miniaturization of a broadband spiral using readily available high-contrast dielectrics and a novel inductive loading technique. Using either dielectric or inductive loading, it is shown that the size can be reduced by more than a factor of two which is close to the observed theoretical limit. To enable the realization of a conformal antenna without the loss of the antenna’s broadband characteristics, a novel ground plane is introduced. The proposed ground plane consists of a traditional metallic ground plane coated with a layer of ferrite material.
    [Show full text]