Retromer Deficiency in Amyotrophic Lateral Sclerosis

Total Page:16

File Type:pdf, Size:1020Kb

Retromer Deficiency in Amyotrophic Lateral Sclerosis Retromer deficiency in amyotrophic lateral sclerosis Eduardo J Pérez-Torres Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2020 Eduardo J Pérez-Torres All Rights Reserved ABSTRACT RETROMER DEFICIENCY IN AMYOTROPHIC LATERAL SCLEROSIS Eduardo J Pérez-Torres The retromer is a protein complex whose function is to mediate the recycling of proteins from the endosome to either the plasma membrane or the trans-Golgi network. A deficit in retromer function has been associated with multiple neurodegenerative disorders, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). In both AD and PD, deficiencies have been found in retromer expression both in patient tissues and in animal models of disease. Furthermore, mutations in the retromer and in retromer-associated genes have been strongly linked with both diseases. Despite ample evidence of the link between the retromer and neurodegeneration, little is known about the retromer in the context of amyotrophic lateral sclerosis (ALS), another common neurodegenerative disorder. ALS is an adult-onset neurodegenerative disorder of the upper and lower motor neurons (MNs) characterized by muscle wasting and weakness leading to death within 3-5 years after diagnosis. To date, the most commonly used model of ALS is a transgenic (Tg) mouse that overexpresses an ALS-causing G93A mutation in the human superoxide dismutase 1 (SOD1) gene. In this study, I first establish a link between the retromer and ALS by showing that cells from ALS patients as well as tissues and cells from SOD1G93A-Tg mice express lower protein levels of the retromer core components—vacuolar protein sorting 35 (Vps35), Vps26a, and Vps29. I then establish that deficiencies in retromer core proteins have functional consequences in an in vitro model of ALS. Having found significant deficiencies in the retromer in SOD1G93A-Tg mice, I then followed the model of studies performed in mouse models of other neurodegenerative disorders by investigating whether repletion of retromer levels, either virally or pharmacologically, in SOD1G93A-Tg mice confers a therapeutic benefit. Surprisingly, I find that rather than ameliorating disease, repletion of retromer levels in SOD1G93A-Tg mice exacerbates it, resulting in a faster decline in motor performance, earlier mortality, and a decrease in MNs in the spinal cord. Finally, since retromer repletion causes deleterious effects on SOD1G93A-Tg mouse disease progression, I study the effect of a single allele deletion of Vps35 in SOD1G93A-Tg mice and find that this depletion of the retromer results in amelioration of disease, including delayed onset of symptomatology, slower decline of motor deficits, delayed mortality, and an increase in MNs in the spinal cord. Altogether, the findings reported herein, support the notion that a mild defect in retromer develops over the course of the disease, which, rather than being deleterious may be therapeutic in mutant SOD1-induced MN degeneration. Perhaps this unexpected outcome may be explained by the fact that the observed mild nature of the defect is not sufficient to kill MNs but enough to alter the trafficking of specific cargos such as AMPA receptors, allowing MNs to better withstand the neurodegenerative process. TABLE OF CONTENTS List of Figures and Tables.............................................................................................................. iv Acknowledgements ....................................................................................................................... vii Chapter 1 General Introduction ...................................................................................................... 1 1.1 Endosomal trafficking ........................................................................................................... 1 1.1.1 Endocytosis..................................................................................................................... 2 1.1.2 Golgi-to-Endosome Transport ........................................................................................ 4 1.1.3 Endosomal Maturation ................................................................................................... 5 1.1.4 Macroautophagy ........................................................................................................... 13 1.1.5 Recycling ...................................................................................................................... 16 1.2 Retromer in Neurodegenerative Disease ............................................................................. 27 1.2.1 Alzheimer’s Disease ..................................................................................................... 27 1.2.2 Parkinson’s Disease ...................................................................................................... 31 1.2.3 Other Neurological Disorders....................................................................................... 34 1.3 Amyotrophic Lateral Sclerosis ............................................................................................ 37 1.3.1 Clinical features of ALS ............................................................................................... 38 1.3.2 Neuropathology of ALS ............................................................................................... 42 1.3.3 Familial ALS and associated mutations ....................................................................... 44 1.3.4 Mouse models of ALS .................................................................................................. 46 1.3.5 Disease mechanisms of ALS ........................................................................................ 50 1.4 Specific Aims ...................................................................................................................... 63 Chapter 2 Retromer Quantification in Cells and Tissues from ALS Patients and Mouse Models of ALS ............................................................................................................................................... 65 2.1 Introduction ......................................................................................................................... 65 2.2 Results ................................................................................................................................. 67 2.2.1 Characterization of retromer expression in SOD1G93A-Tg mouse tissues .................... 67 2.2.2 Characterization of retromer expression in ALS-affected neural cells in the SOD1G93A- Tg mouse ............................................................................................................................... 74 2.2.3 Characterization of retromer expression in ALS-affected human tissues and cells ..... 80 2.3 Discussion ........................................................................................................................... 87 2.3.1 Retromer depletion in ALS MNs ................................................................................. 87 2.3.2 Retromer depletion in ALS astrocytes ......................................................................... 89 2.3.3 Retromer depletion coincides with active ALS pathology ........................................... 90 i 2.3.4 Expression of retromer proteins and mRNAs in ALS tissues and cells ....................... 92 2.3.5 Retromer deficiency not specific to mutations in SOD1 .............................................. 94 Chapter 3 Causes and Effects of Retromer Deficiency in SOD1G93A-Tg Astrocytes In Vitro ..... 96 3.1 Introduction ......................................................................................................................... 96 3.1.1 Degradation of retromer proteins ................................................................................. 96 3.1.2 Retromer trafficking of APP ........................................................................................ 97 3.2 Results ................................................................................................................................. 98 3.2.1 Retromer expression is independent of astrocyte activation state ................................ 99 3.2.2 Retromer degradation rate is independent of astrocyte SOD1G93A transgene expression ............................................................................................................................................. 100 3.2.3 APP trafficking and processing in SOD1G93A-Tg astrocytes ...................................... 102 3.2.4 Neurotoxicity due to retromer depletion in an in vitro system ................................... 106 3.3 Discussion ......................................................................................................................... 110 3.3.1 Retromer protein degradation ..................................................................................... 110 3.3.2 APP processing in ALS .............................................................................................. 111 3.3.3 Neurotoxicity of retromer depletion ........................................................................... 113 Chapter 4 Retromer Repletion in SOD1G93A-Tg mice ................................................................ 114 4.1 Introduction ......................................................................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Genome-Wide Screen Identifies Genes Whose Inactivation Confer Resistance to Cisplatin in Saccharomyces Cerevisiae
    Research Article Genome-Wide Screen Identifies Genes Whose Inactivation Confer Resistance to Cisplatin in Saccharomyces cerevisiae Ruea-Yea Huang, Martha Eddy, Marija Vujcic, and David Kowalski Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York Abstract therapy (1). This may be due to the genomic instability of tumors, To identify novel genes that mediate cellular resistance to which gives rise to mutations or defects in multiple molecular cisplatin, we have screened the collection of Saccharomyces pathways. Both gain-of-function and loss-of-function mutations cerevisiae deletion strains. We have found reproducibly 22 can confer resistance to platinum compounds. The best known genes/open reading frames (ORF), which when deleted, confer examples are the loss of DNA mismatch repair (MMR) genes, resistance to cisplatin at a concentration that is lethal to wild- hMLH1, hMSH2, or hPMS2 (1, 4). MMR proteins function in type cells. Complementation of individual deletion strains recognition of damaged DNA adducts. Previous studies indicate with the corresponding wild-type gene abolished cisplatin that mutation or methylation-mediated silencing of these genes resistance, confirming that specific gene deletions caused the results in failure to recognize the adduct and propagate a signal to resistance. Twenty of the genes/ORFs identified have not been the apoptotic machinery, thereby producing low-level resistance to previously linked to cisplatin resistance and belong to several cisplatin (5). In addition, cisplatin treatment can enrich for malignant populations of cells that have lost DNA mismatch distinct functional groups. Major functional groups encode proteins involved in nucleotide metabolism, mRNA catabo- repair both in vitro and in vivo (4).
    [Show full text]
  • Molecular Mechanism for the Subversion of the Retromer Coat By
    Molecular mechanism for the subversion of the PNAS PLUS retromer coat by the Legionella effector RidL Miguel Romano-Morenoa, Adriana L. Rojasa, Chad D. Williamsonb, David C. Gershlickb, María Lucasa, Michail N. Isupovc, Juan S. Bonifacinob, Matthias P. Machnerd,1, and Aitor Hierroa,e,1 aStructural Biology Unit, Centro de Investigación Cooperativa en Biociencias, 48160 Derio, Spain; bCell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; cThe Henry Wellcome Building for Biocatalysis, Biosciences, University of Exeter, Exeter EX4 4SB, United Kingdom; dDivision of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and eIKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Edited by Ralph R. Isberg, Howard Hughes Medical Institute and Tufts University School of Medicine, Boston, MA, and approved November 13, 2017 (received for review August 30, 2017) Microbial pathogens employ sophisticated virulence strategies to VAMP7 together with several Rab GTPases that function along cause infections in humans. The intracellular pathogen Legionella distinct trafficking pathways (18), and the Tre-2/Bub2/Cdc16 pneumophila encodes RidL to hijack the host scaffold protein domain family member 5 (TBC1D5), a GTPase-activating pro- VPS29, a component of retromer and retriever complexes critical for tein (GAP) that causes Rab7 inactivation and redistribution to endosomal cargo recycling. Here, we determined the crystal structure the cytosol (14). of L. pneumophila RidL in complex with the human VPS29–VPS35 Recent biochemical and structural characterization of single retromer subcomplex. A hairpin loop protruding from RidL inserts subunits and subcomplexes from retromer have provided insights into a conserved pocket on VPS29 that is also used by cellular ligands, into its modular architecture and mechanisms of action.
    [Show full text]
  • Inhibition of Mitochondrial Complex II in Neuronal Cells Triggers Unique
    www.nature.com/scientificreports OPEN Inhibition of mitochondrial complex II in neuronal cells triggers unique pathways culminating in autophagy with implications for neurodegeneration Sathyanarayanan Ranganayaki1, Neema Jamshidi2, Mohamad Aiyaz3, Santhosh‑Kumar Rashmi4, Narayanappa Gayathri4, Pulleri Kandi Harsha5, Balasundaram Padmanabhan6 & Muchukunte Mukunda Srinivas Bharath7* Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson’s disease, Huntington’s disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1‑methyl‑4‑phenylpyridinium (MPP+) and 3‑nitropropionic acid (3‑NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down‑stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome‑wide transcriptomics of N27 neuronal cells exposed to 3‑NPA, compared with MPP+ and Mn revealed varied transcriptomic profle. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway diferentially regulated in the 3‑NPA model with implications for neuronal survival. This pathway was unique to 3‑NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3‑NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor
    [Show full text]
  • Genomic Signatures of Recent Adaptive Divergence in the Swamp Sparrow (Melospiza Georgiana)
    GENOMIC SIGNATURES OF RECENT ADAPTIVE DIVERGENCE IN THE SWAMP SPARROW (MELOSPIZA GEORGIANA) A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Petra Elizabeth Deane December 2017 © 2017 Petra Elizabeth Deane GENOMIC SIGNATURES OF RECENT ADAPTIVE DIVERGENCE IN THE SWAMP SPARROW (MELOSPIZA GEORGIANA) Petra Elizabeth Deane, Ph. D. Cornell University 2017 Populations that have recently diverged across sharp environmental gradients provide an opportunity to study the mechanisms by which natural selection drives adaptive divergence. Inland and coastal populations of the North American swamp sparrow (Melospiza georgiana) have become an emerging model system for studies of natural selection because they are morphologically and behaviorally distinct despite a very recent divergence time (<15,000 years), yet common garden experiments have demonstrated a genetic basis for their differences. I characterized genomic patterns of variation within and between inland and coastal swamp sparrows via reduced representation sequencing and demonstrated that background genomic differentiation (FST=0.02) and divergence (ΦST=0.05) between these populations is very low, rendering signatures of natural selection highly detectable (max FST=0.8). I then sequenced and assembled a de novo reference genome for the species and conducted a scan for genes involved in coastal adaptation, particularly the evolution of a deeper bill, darker plumage, and tolerance for salinity. I recovered a multigenic snapshot of adaptation via robust signatures of selection at 31 genes. As in Darwin’s finches, bone morphogenetic protein (BMP) signaling appears responsible for changes in bill depth, a putative magic trait for ecological speciation.
    [Show full text]
  • Arsenic Hexoxide Has Differential Effects on Cell Proliferation And
    www.nature.com/scientificreports OPEN Arsenic hexoxide has diferential efects on cell proliferation and genome‑wide gene expression in human primary mammary epithelial and MCF7 cells Donguk Kim1,7, Na Yeon Park2,7, Keunsoo Kang3, Stuart K. Calderwood4, Dong‑Hyung Cho2, Ill Ju Bae5* & Heeyoun Bunch1,6* Arsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer efects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA‑sequencing and bioinformatics analyses, diferentially expressed genes in signifcantly afected biological pathways in these cell types were validated by real‑time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly diferential efects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without afecting the growth of HUMEC in a dose‑dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are signifcantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6‑treated MCF7 cells.
    [Show full text]
  • Mouse Vps29 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Vps29 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Vps29 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Vps29 gene (NCBI Reference Sequence: NM_019780 ; Ensembl: ENSMUSG00000029462 ) is located on Mouse chromosome 5. 4 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 4 (Transcript: ENSMUST00000155671). Exon 2~3 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Vps29 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-97B19 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 0.73% of the coding region. The knockout of Exon 2~3 will result in frameshift of the gene. The size of intron 1 for 5'-loxP site insertion: 5536 bp, and the size of intron 3 for 3'-loxP site insertion: 533 bp. The size of effective cKO region: ~2760 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Vps29 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection
    fgene-11-00358 April 9, 2020 Time: 15:55 # 1 ORIGINAL RESEARCH published: 15 April 2020 doi: 10.3389/fgene.2020.00358 Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection Allen F. Ryan1*, Chanond A. Nasamran2, Kwang Pak1, Clara Draf1, Kathleen M. Fisch2, Nicholas Webster3 and Arwa Kurabi1 1 Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 2 Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States, 3 Medicine/Endocrinology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States Single-cell transcriptomics was used to profile cells of the normal murine middle ear. Clustering analysis of 6770 transcriptomes identified 17 cell clusters corresponding to distinct cell types: five epithelial, three stromal, three lymphocyte, two monocyte, Edited by: two endothelial, one pericyte and one melanocyte cluster. Within some clusters, Amélie Bonnefond, Institut National de la Santé et de la cell subtypes were identified. While many corresponded to those cell types known Recherche Médicale (INSERM), from prior studies, several novel types or subtypes were noted. The results indicate France unexpected cellular diversity within the resting middle ear mucosa. The resolution of Reviewed by: Fabien Delahaye, uncomplicated, acute, otitis media is too rapid for cognate immunity to play a major Institut Pasteur de Lille, France role. Thus innate immunity is likely responsible for normal recovery from middle ear Nelson L. S. Tang, infection. The need for rapid response to pathogens suggests that innate immune The Chinese University of Hong Kong, China genes may be constitutively expressed by middle ear cells.
    [Show full text]
  • VPS29 Exerts Opposing Effects on Endocytic Viral Entry 2 3 4 Daniel Poston1,2*, Yiska Weisblum1*, Alvaro Hobbs1, Paul D
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455441; this version posted August 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 VPS29 exerts opposing effects on endocytic viral entry 2 3 4 Daniel Poston1,2*, Yiska Weisblum1*, Alvaro Hobbs1, Paul D. Bieniasz1,3 5 6 7 1. Laboratory of Retrovirology, The Rockefeller University, 1230 York Avenue, New York NY 8 10065 9 2. Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, 1300 York 10 Avenue, New York NY 10021 11 3. Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New 12 York NY 10065 13 14 15 *These authors contributed equally 16 17 18 Correspondence to: Paul D. Bieniasz, Laboratory of Retrovirology, The Rockefeller University, 19 31 1230 York Avenue, New York NY 10065 E.Mail [email protected] 20 21 22 23 SUMMARY 24 Emerging zoonotic viral pathogens threaten global health and there is an urgent need to discover 25 host and viral determinants influencing infection. We performed a loss-of-function genome-wide 26 CRISPR screen in a human lung cell line using HCoV-OC43, a human betacoronavirus. One 27 candidate gene, VPS29, was required for infection by HCoV-OC43, SARS-CoV-2, other 28 endemic and pandemic threat coronaviruses as well as ebolavirus. However, VPS29 deficiency 29 had no effect on certain other viruses that enter cells via endosomes and had an opposing, 30 enhancing effect on influenza A virus infection.
    [Show full text]
  • The P5-Atpase ATP13A1 Modulates MR1-Mediated Antigen Presentation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445708; this version posted May 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The P5-ATPase ATP13A1 modulates MR1- mediated antigen presentation Corinna A. Kulicke1, Erica De Zan2, Zeynep Hein3, Claudia Gonzalez-Lopez1, Swapnil Ghanwat3, Natacha Veerapen4, Gurdyal S. Besra4, Paul Klenerman5,6, John C. Christianson7, Sebastian Springer3, Sebastian Nijman2, Vincenzo Cerundolo1, #, § , and Mariolina Salio1, # 1. MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK 2. Ludwig Institute for Cancer Research Ltd. and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK 3. Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany. 4. School of Biosciences, University of Birmingham, Birmingham B11 2TT, United Kingdom 5. Peter Medawar Building, Nuffield Department of Medicine, University of Oxford 6. Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford 7. Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK # joint senior authors § deceased January 7th 2020 current addresses: C.K. – Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States; S.N. – Scenic Biotech BV, Amsterdam, The Netherlands correspondence: [email protected]; [email protected] Keywords: MHC I-related protein 1 (MR1), mucosal-associated invariant T cell (MAIT), MR1-restricted T cell (MR1T), antigen presentation, protein trafficking, HAP1, gene trap, ATP13A1, P5-type ATPase bioRxiv preprint doi: https://doi.org/10.1101/2021.05.26.445708; this version posted May 27, 2021.
    [Show full text]
  • RAB-GAP Immunity Signaling by the Tbc1d23 Spatiotemporal Inhibition
    Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP This information is current as Lesly De Arras, Ivana V. Yang, Brad Lackford, David W. H. of September 28, 2021. Riches, Rytis Prekeris, Jonathan H. Freedman, David A. Schwartz and Scott Alper J Immunol 2012; 188:2905-2913; Prepublished online 6 February 2012; doi: 10.4049/jimmunol.1102595 Downloaded from http://www.jimmunol.org/content/188/6/2905 Supplementary http://www.jimmunol.org/content/suppl/2012/02/06/jimmunol.110259 Material 5.DC1 http://www.jimmunol.org/ References This article cites 58 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/188/6/2905.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Spatiotemporal Inhibition of Innate Immunity Signaling by the Tbc1d23 RAB-GAP Lesly De Arras,*,† Ivana V. Yang,†,‡ Brad Lackford,x David W.
    [Show full text]
  • Mathematical Model of Auxin Metabolism in Shoots Of
    RUSSIAN ACADEMY OF SCIENCES SIBERIAN BRANCH INSTITUTE OF CYTOLOGY AND GENETICS THE SIXTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE Abstracts BGRS’2008 Novosibirsk, Russia June 22—28, 2008 Novosibirsk 2008 1 INTERNATIONAL PROGRAM COMMITTEE* Nikolay Kolchanov Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia (Chairman of the Conference) Ralf Hofestadt University of Bielefeld, Germany (Co-Chairman of the Conference) Dagmara Furman Institute of Cytology and Genetics SB RAS, Novosibirsk, (Conference Scientific Secretary) Dmitry Afonnikov Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia Shandar Ahmad National Institute of Biomedical Innovation, Japan Philip Bourne University of California San Diego, San-Diego, USA Samir Brahmachari Institute of Genomics and Integrative Biology, Delhi, India Ming Chen Department of Bioinformatics Zhejiang University, Hangzhou, China А. Fazel Famili University of Ottawa, IIT/ITI - National Research Council Canada, Ottawa, Canada Mikhail Gelfand Institute for Information Transmission Problems RAS, Russia Boris M. Glinsky Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia Nikolay Goncharov Institute of Cytology and Genetics, Novosibirsk, Russia Charlie Hodgman Multidisciplinary Centre for Integrative Biology, School of Biosciences, University of Nottingham, UK Alexis Ivanov Institute of Biomedical Chemistry RAMS, Moscow, Russia Manfred Kayser Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
    [Show full text]