nanomaterials Article Development of Fractalkine-Targeted Nanofibers that Localize to Sites of Arterial Injury Hussein A. Kassam 1, David C. Gillis 1, Brooke R. Dandurand 1 , Mark R. Karver 2 , Nick D. Tsihlis 1 , Samuel I. Stupp 2,3,4,5,6 and Melina R. Kibbe 1,7,* 1 Department of Surgery, Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC 27599, USA;
[email protected] (H.A.K.);
[email protected] (D.C.G.);
[email protected] (B.R.D.);
[email protected] (N.D.T.) 2 Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA;
[email protected] (M.R.K.);
[email protected] (S.I.S.) 3 Department of Chemistry, Northwestern University, Evanston, IL 60208, USA 4 Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA 5 Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA 6 Department of Medicine, Northwestern University, Chicago, IL 60611, USA 7 Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA * Correspondence:
[email protected]; Tel.: +1-919-445-0369 Received: 30 December 2019; Accepted: 26 February 2020; Published: 28 February 2020 Abstract: Atherosclerosis is the leading cause of death and disability around the world, with current treatments limited by neointimal hyperplasia. Our goal was to synthesize, characterize, and evaluate an injectable, targeted nanomaterial that will specifically bind to the site of arterial injury. Our target protein is fractalkine, a chemokine involved in both neointimal hyperplasia and atherosclerosis. We showed increased fractalkine staining in rat carotid arteries 24 h following arterial injury and in the aorta of low-density lipoprotein receptor knockout (LDLR-/-) mice fed a high-fat diet for 16 weeks.