Endogenous Dendritic Cells from the Tumor Microenvironment Support T-ALL Growth Via IGF1R Activation

Total Page:16

File Type:pdf, Size:1020Kb

Endogenous Dendritic Cells from the Tumor Microenvironment Support T-ALL Growth Via IGF1R Activation Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation Todd A. Tripletta, Kim T. Cardenasa,1, Jessica N. Lancastera, Zicheng Hua, Hilary J. Seldena, Guadalupe J. Jassoa, Sadhana Balasubramanyama, Kathy Chana, LiQi Lib, Xi Chenc,d, Andrea N. Marcogliesee, Utpal P. Davéf, Paul E. Loveb, and Lauren I. R. Ehrlicha,2 aDepartment of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712; bSection on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; cDivision of Biostatistics, Department of Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136; dSylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; eDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and fDivision of Hematology/Oncology, Tennessee Valley Healthcare System and Vanderbilt University Medical Center, Nashville, TN 37232 Edited by Zena Werb, University of California, San Francisco, CA, and approved January 14, 2016 (received for review October 15, 2015) Primary T-cell acute lymphoblastic leukemia (T-ALL) cells require tumor growth and metastasis (3). Tumor-associated macrophages stromal-derived signals to survive. Although many studies have (TAMs), which resemble alternatively activated (M2) macro- identified cell-intrinsic alterations in signaling pathways that promote phages (4), also support tumor growth. TAMs suppress antitumor T-ALL growth, the identity of endogenous stromal cells and their immune responses, promote tumor invasion and angiogenesis, and associated signals in the tumor microenvironment that support T-ALL are negatively associated with clinical outcomes (5). Macrophage remains unknown. By examining the thymic tumor microenviron- depletion slows tumor progression in multiple cancer models (6–8). ments in multiple murine T-ALL models and primary patient samples, Dendritic cells (DCs) within tumor microenvironments also have we discovered the emergence of prominent epithelial-free regions, aberrant phenotypes and have been implicated in suppression of enriched for proliferating tumor cells and dendritic cells (DCs). antitumor adaptive immune responses (9). Thus, through mitogenic Systematic evaluation of the functional capacity of tumor-associated signaling, tissue remodeling, and suppression of adaptive immunity, stromal cells revealed that myeloid cells, primarily DCs, are necessary heterogeneous cells in the tumor microenvironment cooperate and sufficient to support T-ALL survival ex vivo. DCs support T-ALL to promote growth of solid and hematologic malignancies (2). growth both in primary thymic tumors and at secondary tumor sites. Importantly, human primary T-ALL samples have been shown to To identify a molecular mechanism by which DCs support T-ALL require stromal-derived signals for survival (10). Thus, identifica- growth, we first performed gene expression profiling, which revealed up-regulation of platelet-derived growth factor receptor beta (Pdgfrb) tion of tumor stromal cell types that support T-ALL could unveil and insulin-like growth factor I receptor (Igf1r)onT-ALLcells,with novel therapeutic targets. concomitant expression of their ligands by tumor-associated DCs. There is ample reason to suspect that the thymic microenviron- Both Pdgfrb and Igf1r were activated in ex vivo T-ALL cells, and co- ment, the primary site of T-ALL, contributes to lymphomagenesis. culture with tumor-associated, but not normal thymic DCs, sustained IGF1R activation. Furthermore, IGF1R signaling was necessary for DC- Significance mediated T-ALL survival. Collectively, these studies provide the first evidence that endogenous tumor-associated DCs supply signals driv- T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of ing T-ALL growth, and implicate tumor-associated DCs and their mi- developing T cells. Cancer cell growth is often driven by cell- togenic signals as auspicious therapeutic targets. intrinsic alterations in signaling pathways as well as extrinsic signals from the tumor microenvironment. Here we identify T-ALL | leukemia | dendritic cell | tumor microenvironment | IGF1R tumor-associated dendritic cells as a key endogenous cell type in the tumor microenvironment that promotes murine T-ALL -cell acute lymphoblastic leukemia (T-ALL) is an aggressive growth and survival at both primary and metastatic tumor sites. Tmalignancy of T-cell progenitors that predominantly affects We also find that tumor-associated dendritic cells activate the in- children and adolescents. Intensified chemotherapeutic regimens sulin-like growth factor I receptor in T-ALL cells, which is critical for have improved 5-y event-free survival rates to over 75% in children their survival. Analysis of primary patient T-ALL samples reveals and 50% in adults. However, these therapies are toxic, and patients phenotypically analogous tumor microenvironments. Our findings who fail to respond or relapse have poor outcomes (1). The main suggest that targeting signals from the tumor microenvironment focus of T-ALL research has been identification of cell-intrinsic could expand therapeutic options for T-ALL. genetic permutations that promote tumor growth, such as activating mutations in the transcription factor NOTCH1,deletionoftumor Author contributions: T.A.T., K.T.C., and L.I.R.E. designed research; T.A.T., K.T.C., J.N.L., suppressor genes in the CDKN2A locus, and aberrant activation of H.J.S., G.J.J., S.B., and K.C. performed research; L.L., A.N.M., U.P.D., and P.E.L. contributed new reagents/analytic tools; T.A.T., K.T.C., J.N.L., Z.H., K.C., X.C., and L.I.R.E. analyzed transcriptional regulators such as LIM domain only 2 (LMO2)(1). data; and T.A.T. and L.I.R.E. wrote the paper. Despite our understanding of these common cell-intrinsic alterations, The authors declare no conflict of interest. we have yet to develop successful, targeted therapeutic approaches to This article is a PNAS Direct Submission. improve patient outcomes, suggesting that we need to broaden our Data deposition: The transcriptional profiling data reported in this paper have been de- understanding of other factors promoting T-ALL growth (1). posited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo Tumor progression is driven not only by cell-intrinsic alter- (accession no. GSE54609). ations but also by dynamic interactions between cancer cells 1Present address: Department of Molecular Medicine, University of Texas Health Science and the surrounding tumor microenvironment (2). For example, Center at San Antonio, San Antonio, TX 78240. cancer-associated fibroblasts (CAFs) secrete factors that pro- 2To whom correspondence should be addressed. Email: [email protected]. mote tumor survival, angiogenesis, and recruitment of inflamma- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. tory cells. CAFs also mediate tissue remodeling that promotes 1073/pnas.1520245113/-/DCSupplemental. E1016–E1025 | PNAS | Published online February 9, 2016 www.pnas.org/cgi/doi/10.1073/pnas.1520245113 Downloaded by guest on September 27, 2021 Normal thymocytes must engage in bidirectional signaling with het- PNAS PLUS erogeneous thymic stromal cells to promote proper differentiation of both thymocyte and stromal compartments (11, 12). Thymic stromal cells consist of hematopoietic cells, such as DCs and macrophages, and nonhematopoietic cells, such as thymic epithelial cells (TECs) and fibroblasts. Thymocyte:TEC crosstalk is essential at multiple stages of T-cell development. TECs express NOTCH ligands and IL-7, which are required for differentiation of normal T-cells (13–15), buthavealsobeenimplicatedinT-ALLtumorigenesis(10,16).Thus, nascent lymphoma cells may coopt signals in the thymic microenvi- ronment to promote tumor growth. Previous studies demonstrated that stromal support is required for ex vivo survival of mouse and human T-ALL cells (10, 17–20) and implicated IL-7 and NOTCH1 signaling in promoting tumor survival (10, 16–18). Together, these findings suggest that TECs might promote T-ALL. However, the above studies addressed the role of stroma in supporting T-ALL predominantly using cell lines and exogenous cytokines; thus, the contribution of endogenous stromal cells in the T-ALL tumor mi- croenvironment remains largely unexplored. Herein, we identify primary stromal cells from the endogenous tumor microenvironment that support T-ALL growth ex vivo. Our data reveal that DCs are expanded within primary and metastatic Fig. 1. LN3 thymic T-ALL cells require tumor stroma to survive and pro- liferate ex vivo. (A) Survival of indicated strains shown as Kaplan–Meier T-ALL tumor microenvironments. Despite the essential contribution survival plots (n = 33, WT; n = 155, LN3). (B–E) Primary T-ALL cells were of TECs to normal thymocyte development, TECs are dispensable cultured with or without stromal cells enriched from mechanically dissoci- for T-ALL survival in tumor:stromal cocultures. In contrast, myeloid ated LN3 thymic tumors or WT thymi. Representative flow cytometric plots cells, particularly DCs from tumor microenvironments at both pri- evaluating viability (B) or DNA content (D) of viable cells 6 d after culture mary and secondary tumor sites, are necessary and sufficient to initiation. (C and E) The percentage of viable
Recommended publications
  • Platelet-Derived Growth Factor Receptor Expression and Amplification in Choroid Plexus Carcinomas
    Modern Pathology (2008) 21, 265–270 & 2008 USCAP, Inc All rights reserved 0893-3952/08 $30.00 www.modernpathology.org Platelet-derived growth factor receptor expression and amplification in choroid plexus carcinomas Nina N Nupponen1,*, Janna Paulsson2,*, Astrid Jeibmann3, Brigitte Wrede4, Minna Tanner5, Johannes EA Wolff 6, Werner Paulus3, Arne O¨ stman2 and Martin Hasselblatt3 1Molecular Cancer Biology Program, University of Helsinki, Helsinki, Finland; 2Department of Oncology–Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden; 3Institute of Neuropathology, University Hospital Mu¨nster, Mu¨nster, Germany; 4Department of Pediatric Oncology, University of Regensburg, Regensburg, Germany; 5Department of Oncology, Tampere University Hospital, Tampere, Finland and 6Children’s Cancer Hospital, MD Anderson Cancer Center, Houston, TX, USA Platelet-derived growth factor (PDGF) receptor signaling has been implicated in the development of glial tumors, but not yet been examined in choroid plexus carcinomas, pediatric tumors with dismal prognosis for which novel treatment options would be desirable. Therefore, protein expression of PDGF receptors a and b as well as amplification status of the respective genes, PDGFRA and PDGFRB, were examined in a series of 22 patients harboring choroid plexus carcinoma using immunohistochemistry and chromogenic in situ hybridization (CISH). The majority of choroid plexus carcinomas expressed PDGF receptors with 6 cases (27%) displaying high staining scores for PDGF receptor a and 13 cases (59%) showing high staining scores for PDGF receptor b. Correspondingly, copy-number gains of PDGFRA were observed in 8 cases out of 12 cases available for CISH and 1 case displayed amplification (six or more signals per nucleus). The proportion of choroid plexus carcinomas with amplification of PDGFRB was even higher (5/12 cases).
    [Show full text]
  • TNF-Α Promotes Colon Cancer Cell Migration and Invasion by Upregulating TROP-2
    3820 ONCOLOGY LETTERS 15: 3820-3827, 2018 TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2 PENG ZHAO and ZHONGTAO ZHANG Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China Received March 3, 2017; Accepted October 24, 2017 DOI: 10.3892/ol.2018.7735 Abstract. High levels of tumor-associated calcium signal but did not significantly affect p38 and JNK phosphoryla- transduction protein (TROP)-2 have been demonstrated to tion levels. Treatment with a specific ERK1/2 inhibitor be strongly associated with tumor necrosis factor (TNF)-α suppressed the TNF-α-induced upregulation of TROP-2 and levels in colon cancer. In the present study, the effect of the TNF-α-induced colon cancer cell migration and inva- TNF-α on the regulation of TROP-2 expression and its effect sion. In conclusion, the present results demonstrated that in colon cancer cell migration and invasion were investigated low concentrations of TNF-α significantly enhanced colon in vitro. TROP-2 protein levels were evaluated in HCT-116 cancer cell migration and invasion by upregulating TROP-2 human colon cancer cells cultured with various concentra- via the ERK1/2 signaling pathway. tions of TNF-α using western blot analysis. Changes in the migratory and invasive potential of the cells were evaluated Introduction using a wound healing and transwell assay, respectively. Then, TROP-2 expression was downregulated in cells by use Colon cancer is a common malignant tumor of the digestive of siRNA, and TROP‑2 knockdown was confirmed at the tract, from which morbidity and mortality have been increasing mRNA and protein level by reverse transcription-quantitative in recent years.
    [Show full text]
  • Endogenous Dendritic Cells from the Tumor Microenvironment Support T
    Endogenous dendritic cells from the tumor PNAS PLUS microenvironment support T-ALL growth via IGF1R activation Todd A. Tripletta, Kim T. Cardenasa,1, Jessica N. Lancastera, Zicheng Hua, Hilary J. Seldena, Guadalupe J. Jassoa, Sadhana Balasubramanyama, Kathy Chana, LiQi Lib, Xi Chenc,d, Andrea N. Marcogliesee, Utpal P. Davéf, Paul E. Loveb, and Lauren I. R. Ehrlicha,2 aDepartment of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712; bSection on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; cDivision of Biostatistics, Department of Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136; dSylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; eDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; and fDivision of Hematology/Oncology, Tennessee Valley Healthcare System and Vanderbilt University Medical Center, Nashville, TN 37232 Edited by Zena Werb, University of California, San Francisco, CA, and approved January 14, 2016 (received for review October 15, 2015) Primary T-cell acute lymphoblastic leukemia (T-ALL) cells require tumor growth and metastasis (3). Tumor-associated macrophages stromal-derived signals to survive. Although many studies have (TAMs), which resemble alternatively activated (M2) macro- identified cell-intrinsic alterations in signaling pathways that promote phages (4), also support tumor growth. TAMs suppress antitumor T-ALL growth, the identity of endogenous stromal cells and their immune responses, promote tumor invasion and angiogenesis, and associated signals in the tumor microenvironment that support T-ALL are negatively associated with clinical outcomes (5).
    [Show full text]
  • Pdgfrβ Regulates Adipose Tissue Expansion and Glucose
    1008 Diabetes Volume 66, April 2017 Yasuhiro Onogi,1 Tsutomu Wada,1 Chie Kamiya,1 Kento Inata,1 Takatoshi Matsuzawa,1 Yuka Inaba,2,3 Kumi Kimura,2 Hiroshi Inoue,2,3 Seiji Yamamoto,4 Yoko Ishii,4 Daisuke Koya,5 Hiroshi Tsuneki,1 Masakiyo Sasahara,4 and Toshiyasu Sasaoka1 PDGFRb Regulates Adipose Tissue Expansion and Glucose Metabolism via Vascular Remodeling in Diet-Induced Obesity Diabetes 2017;66:1008–1021 | DOI: 10.2337/db16-0881 Platelet-derived growth factor (PDGF) is a key factor in The physiological roles of the vasculature in adipose tissue angiogenesis; however, its role in adult obesity remains have been attracting interest from the viewpoint of adipose unclear. In order to clarify its pathophysiological role, tissue expansion and chronic inflammation (1,2). White we investigated the significance of PDGF receptor b adipose tissue (WAT) such as visceral fat possesses the (PDGFRb) in adipose tissue expansion and glucose unique characteristic of plasticity; its volume may change metabolism. Mature vessels in the epididymal white several fold even after growth depending on nutritional adipose tissue (eWAT) were tightly wrapped with peri- conditions. Enlarged adipose tissue is chronically exposed cytes in normal mice. Pericyte desorption from vessels to hypoxia (3,4), which stimulates the production of angio- and the subsequent proliferation of endothelial cells genic factors for the supplementation of nutrients and were markedly increased in the eWAT of diet-induced oxygen to the newly enlarged tissue area (5). Selective ab- obese mice. Analyses with flow cytometry and adipose lation of the vasculature in WAT by apoptosis-inducible tissue cultures indicated that PDGF-B caused the de- peptides or the systemic administration of angiogenic in- PATHOPHYSIOLOGY tachment of pericytes from vessels in a concentration- hibitors has been shown to reduce WAT volumes and result dependent manner.
    [Show full text]
  • 60+ Genes Tested FDA-Approved Targeted Therapies & Gene Indicators
    ® 60+ genes tested ABL1, ABL2, ALK, AR, ARAF, ATM, ATR, BRAF, BRCA1*, BRCA2*, BTK, CCND1, CCND2, CCND3, CDK4, Somatic mutation detection CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, DDR1, DDR2, EGFR, ERBB2 (HER2), ESR1, FGFR1, FGFR2, for approved cancer therapies FGFR3, FGFR4, FLCN, FLT1, FLT3, FLT4, GNA11, GNAQ, HDAC1, HDAC2, HRAS, JAK1, JAK2, KDR, KIT, in solid tumors KRAS, MAP2K1, MET, MTOR, NF1, NF2, NRAS, PALB2, PARP1, PDGFRA, PDGFRB, PIK3CA, PIK3CD, PTCH1, PTEN, RAF1, RET, ROS1, SMO, SRC, STK11, TNK2, TSC1, TSC2 FDA-approved Targeted Therapies & Gene Indicators Abiraterone AR Necitumumab EGFR Ado-Trastuzumab ERBB2 (HER2) Nilotinib ABL1, ABL2, DDR1, DDR2, KIT, PDGFRA, PDGFRB Emtansine FGFR1, FGFR2, FGFR3, FLT1, FLT4, KDR, PDGFRA, Afatinib EGFR, ERBB2 (HER2) Nintedanib PDGFRB Alectinib ALK Olaparib ATM, ATR, BRCA1*, BRCA2*, PALB2, PARP1 Anastrozole ESR1 Osimertinib EGFR Axitinib FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB CDK4, CDK6, CCND1, CCND2, CCND3, CDKN1A, Palbociclib Belinostat HDAC1, HDAC2 CDKN1B, CDKN2A, CDKN2B Panitumumab EGFR Bicalutamide AR Panobinostat HDAC1, HDAC2 Bosutinib ABL1, SRC Pazopanib FLT1, FLT4, KDR, KIT, PDGFRA, PDGFRB Cabozantinib FLT1, FLT3, FLT4, KDR, KIT, MET, RET Pertuzumab ERBB2 (HER2) Ceritinib ALK ABL1, FGFR1, FGFR2, FGFR3, FGFR4, FLT1, FLT3, FLT4, Cetuximab EGFR Ponatinib KDR, KIT, PDGFRA, PDGFRB, RET, SRC Cobimetinib MAP2K1 Ramucirumab KDR Crizotinib ALK, MET, ROS1 Regorafenib ARAF, BRAF, FLT1, FLT4, KDR, KIT, PDGFRB, RAF1, RET Dabrafenib BRAF Ruxolitinib JAK1, JAK2 Dasatinib ABL1, ABL2, DDR1, DDR2, SRC, TNK2
    [Show full text]
  • PSM, a Mediator of PDGF-BB-, IGF-I-, and Insulin-Stimulated Mitogenesis
    Oncogene (2000) 19, 39 ± 50 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc PSM, a mediator of PDGF-BB-, IGF-I-, and insulin-stimulated mitogenesis Heimo Riedel*,1,2, Nasim Yousaf1, Yuyuan Zhao4, Heping Dai1,3, Youping Deng1 and Jian Wang1 1Department of Biological Sciences, Wayne State University, Detroit, Michigan, MI 48202, USA; 2Member, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, MI 48201, USA PSM/SH2-B has been described as a cellular partner of Introduction the FceRI receptor, insulin receptor (IR), insulin-like growth factor-I (IGF-I) receptor (IGF-IR), and nerve The platelet-derived growth factor (PDGF) family growth factor receptor (TrkA). A function has been represents key mitogenic and chemotactic factors that proposed in neuronal dierentiation and development but have been exploited by the Simian sarcoma virus v-sis its role in other signaling pathways is still unclear. To oncogene which results in altered PDGF expression further elucidate the physiologic role of PSM we have (Water®eld et al., 1983). Normal cellular PDGF identi®ed additional mitogenic receptor tyrosine kinases appears in three distinct isoforms as any combination as putative PSM partners including platelet-derived of the PDGF A and B chains which act in paracrine growth factor (PDGF) receptor (PDGFR) beta, hepato- and autocrine mechanisms (Heldin, 1993). PDGF cyte growth factor receptor (Met), and ®broblast growth receptor (PDGFR) signal transduction appears to be factor receptor. We have mapped Y740 as a site of a largely membrane delineated event (Hughes et al., PDGFR beta that is involved in the association with 1996).
    [Show full text]
  • WSC 20-21 Conf 6 Illustrated Results
    Joint Pathology CenterJoint Pathology Center Veterinary PathologyVeterinary Services Pathology Services WEDNESDAY SLIDE CONFERENCE 2020-2021 WEDNESDAY SLIDE CONFERENCE 2019-2020 Conference 6 C o n f e r e n c e 16 29 January 2020 30 September 2020 Dr. Ingeborg Langohr, DVM, PhD, DACVP Professor Department of Pathobiological Sciences Louisiana State University School of Veterinary Medicine Joint Pathology Center Baton Rouge, LA Silver Spring, Maryland CASE I: CASE S1809996 1: N16 (JPC-032 4135077(4084301).-00 ) Microscopic2.2x1.5x2 Description: cm firm mass The originatinginterstitium from the dura within themater section (meningioma). is diffusely infiltrated by Signalment:Signalment: A 3-month 13- old,yrs male,of age, mixed spayed- female,moderate to large numbers of predominantly breed pigGolden (Sus scrofa Retriever,) Canis lupus familiaris, caninemononuclear. Laboratory cells along results: with edema. There is abundantCytology: type II pneumocyteIt was reported hyperplasia that ante -mortem History: This pig had no previous signs of History: lining alveolarcytology septae of blood and manysmears of from the this animal were illness, andIt waswas reportedfound dead. that the patient had decreased consistent with lymphoid leukemia. appetite and lethargy for the past 1-2 weeks andalveolar spacesSpecial have staining: central Under areas polarized of light, Congo Gross Pathologyhad diarrhea: Approximately for ~1 day. She70% had of a history ofnecrotic macrophagesRed special admixedstain withrevealed other apple-green the lungs,seizures primarily for thein the past cranial ~3 years; regions her last of seizure wasmononuclear birefringence cells and of fewer material neutrophils. effacing glomeruli and the lobes,1 were month patchy ago. darkThe red,patient and hadfirm a generalizedOccasionally cardiac there vessel is free.
    [Show full text]
  • PDGFR-Β+ Fibroblasts Deteriorate Survival in Human Solid Tumors: a Meta-Analysis
    www.aging-us.com AGING 2021, Vol. 13, No. 10 Research Paper PDGFR-β+ fibroblasts deteriorate survival in human solid tumors: a meta-analysis Guoming Hu1,*, Liming Huang1,*, Kefang zhong1, Liwei Meng1, Feng Xu1, Shimin Wang2, Tao Zhang3,& 1Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China 2Department of Nephrology, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang 312000, China 3Department of General Surgery III, Affiliated Hospital of Shaoxing University, Zhejiang 312000, China *Equal contribution Correspondence to: Tao Zhang, Guoming Hu; email: [email protected], https://orcid.org/0000-0001-7533-4900; [email protected] Keywords: tumor-infiltrating PDGFR-β+ fibroblasts, worse prognosis, solid tumor, meta-analysis Received: January 11, 2021 Accepted: April 2, 2021 Published: May 3, 2021 Copyright: © 2021 Hu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Fibroblasts are a highly heterogeneous population in tumor microenvironment. PDGFR-β+ fibroblasts, a subpopulation of activated fibroblasts, have proven to correlate with cancer progression through multiple of mechanisms including inducing angiogenesis and immune evasion. However, the prognostic role of these cells in solid tumors is still not conclusive. Herein, we carried out a meta-analysis including 24 published studies with 6752 patients searched from PubMed, Embase and EBSCO to better comprehend the value of such subpopulation in prognosis prediction for solid tumors.
    [Show full text]
  • The Evolving Relationship of Wound Healing and Tumor Stroma
    The evolving relationship of wound healing and tumor stroma Deshka S. Foster, … , Michael T. Longaker, Jeffrey A. Norton JCI Insight. 2018;3(18):e99911. https://doi.org/10.1172/jci.insight.99911. Review The stroma in solid tumors contains a variety of cellular phenotypes and signaling pathways associated with wound healing, leading to the concept that a tumor behaves as a wound that does not heal. Similarities between tumors and healing wounds include fibroblast recruitment and activation, extracellular matrix (ECM) component deposition, infiltration of immune cells, neovascularization, and cellular lineage plasticity. However, unlike a wound that heals, the edges of a tumor are constantly expanding. Cell migration occurs both inward and outward as the tumor proliferates and invades adjacent tissues, often disregarding organ boundaries. The focus of our review is cancer associated fibroblast (CAF) cellular heterogeneity and plasticity and the acellular matrix components that accompany these cells. We explore how similarities and differences between healing wounds and tumor stroma continue to evolve as research progresses, shedding light on possible therapeutic targets that can result in innovative stromal-based treatments for cancer. Find the latest version: https://jci.me/99911/pdf REVIEW The evolving relationship of wound healing and tumor stroma Deshka S. Foster,1,2 R. Ellen Jones,1 Ryan C. Ransom,1 Michael T. Longaker,1,2 and Jeffrey A. Norton1,2 1Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, and 2Department of Surgery, Stanford University School of Medicine, Stanford, California, USA. The stroma in solid tumors contains a variety of cellular phenotypes and signaling pathways associated with wound healing, leading to the concept that a tumor behaves as a wound that does not heal.
    [Show full text]
  • PDGFRB FISH for Gleevec Eligibility in Myelodysplastic Syndrome/Myeloproliferative Disease (MDS/MPD)
    PDGFRB FISH PRODUCT DATASHEET Proprietary Name: PDGFRB FISH for Gleevec Eligibility in Myelodysplastic Syndrome/Myeloproliferative Disease (MDS/MPD) Established Name: PDGFRB FISH for Gleevec in MDS/MPD INTENDED USE Humanitarian Device. Authorized by Federal law for use in the qualitative detection of PDGFRB gene rearrangement in patients with MDS/MPD. The effectiveness of this device for this use has not been demonstrated. Caution: Federal Law restricts this device to sale by or on the order of a licensed practitioner. PDGFRB FISH for Gleevec Eligibility in Myelodysplastic Syndrome/Myeloproliferative Disease (MDS/MPD) is an in vitro diagnostic test intended for the qualitative detection of PDGFRB gene rearrangement from fresh bone marrow samples of patients with MDS/MPD with a high index of suspicion based on karyotyping showing a 5q31~33 anomaly. The PDGFRB FISH assay is indicated as an aid in the selection of MDS/MPD patients for whom Gleevec® (imatinib mesylate) treatment is being considered. This assay is for professional use only and is to be performed at a single laboratory site. SUMMARY AND EXPLANATION OF THE TEST The PDGFRB FISH assay detects rearrangement of the PDGFRB locus at chromosome 5q31~33 in adult patients with myelodysplastic syndrome/myeloproliferative disease (MDS/MPD). The PDGFRB gene encodes a cell surface receptor tyrosine kinase that upon activation stimulates mesenchymal cell division. Rearrangement of PDGFRB has been demonstrated by classical cytogenetic analysis in an exceedingly small fraction of MDS/MPD patients (~1%), usually cases with a clinical phenotype of chronic myelomonocytic leukemia (CMML). In particular, these patients harbor a t(5:12)(q31;p12) translocation involving the PDGFRB and ETV6 genes.
    [Show full text]
  • Platelet-Derived Growth Factor Isoform Expression in Carbon Tetrachloride
    Laboratory Investigation (2008) 88, 1090–1100 & 2008 USCAP, Inc All rights reserved 0023-6837/08 $30.00 Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury Erawan Borkham-Kamphorst1, Evgenia Kovalenko1, Claudia RC van Roeyen2, Nikolaus Gassler3, Michael Bomble1, Tammo Ostendorf 2,Ju¨rgen Floege2, Axel M Gressner1 and Ralf Weiskirchen1 Platelet-derived growth factor (PDGF) has an essential role in liver fibrogenesis, as PDGF-B and -D both act as potent mitogens on culture-activated hepatic stellate cells (HSCs). Induction of PDGF receptor type-b (PDGFRb) in HSC is well documented in single-dose carbon tetrachloride (CCl4)-induced acute liver injury. Of the newly discovered isoforms PDGF- C and -D, only PDGF-D shows significant upregulation in bile duct ligation (BDL) models. We have now investigated the expression of PDGF isoforms and receptors in chronic liver injury in vivo after long-term CCl4 treatment and demonstrated that isolated hepatocytes have the requisite PDGF signaling pathways, both in the naive state and when isolated from CCl4-treated rats. In vivo, PDGF gene expression showed upregulation of all PDGF isoforms and receptors, with values peaking at 4 weeks and decreasing to near basal levels by 8 and 12 weeks. Interestingly, PDGF-C increased significantly when compared to BDL-models. PDGF-A, PDGF-C and PDGF receptor type-a (PDGFRa) correlated closely with in- flammation and steatosis. Immunohistochemistry revealed expression of PDGF-B, -C and -D in areas corresponding to centrilobular necrosis, inflammation and fibrosis, whereas PDGF-A localized in regenerative hepatocytes. PDGFRb was identified along the fibrotic septa, whereas PDGFRa showed positive staining in fibrotic septa and regenerative hepa- tocytes.
    [Show full text]
  • Abstract: Dissecting PDGFRB Function in NPM- ALK Driven Lymphoma
    University of Veterinary Medicine, Vienna Institute of Pathology and Forensic Veterinary Medicine Abstract: Dissecting PDGFRB function in NPM- ALK driven lymphoma Lukas KENNER, Pathology of Laboratory Animals The study of tumor animal models of proven clinical relevance is essential to advance clinical practice. Anaplastic large cell lymphoma (ALCL) is a malignant T-cell Non-Hodgkin lymphoma and frequently associated with the t(2;5) translocation resulting in expression of the Nucleophosmin-Anaplastic Lymphoma Kinase (NPM-ALK) fusion protein. Recent studies by us identified AP-1 transcription factors (TF) JUNB and cJUN as downstream effectors of NPM-ALK. These TFs directly upregulate platelet derived growth factor receptor B (PDGFRB) expression in lymphoma cells. Based on these findings we established a mouse model for ALCL by expressing NPM-ALK under the CD4 promoter, which is the only animal model reflecting the clinical progression and metastatic potential of the disease. Genetic ablation of cJUN and JUNB in this model did not affect tumor incidence, however lymphomas displayed reduced progression, indicated by reduced vascularization as well as a loss of dissemination. This resulted in extended survival; therapeutic inhibition of PDGFRB with the kinase inhibitor imatinib markedly prolonged the life of NPM-ALK transgenic mice. We therefore conclude that cJUN/JUNB driven expression of PDGFRB in lymphoma cells induces stromal alterations in the microenvironment of the initial ALCL tumor, which are essential for tumor progression and dissemination. This is pointing towards tumor cell autonomous as well as microenvironmental functions of signaling cascades in ALK driven ALCL. Therefore this mouse model is suitable to study tumor stroma interactions, which are currently lacking.
    [Show full text]