Peer-To-Peer (P2P) Networking
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Edonkey File-Sharing Network
The eDonkey File-Sharing Network Oliver Heckmann, Axel Bock, Andreas Mauthe, Ralf Steinmetz Multimedia Kommunikation (KOM) Technische Universitat¨ Darmstadt Merckstr. 25, 64293 Darmstadt (heckmann, bock, mauthe, steinmetz)@kom.tu-darmstadt.de Abstract: The eDonkey 2000 file-sharing network is one of the most successful peer- to-peer file-sharing applications, especially in Germany. The network itself is a hybrid peer-to-peer network with client applications running on the end-system that are con- nected to a distributed network of dedicated servers. In this paper we describe the eDonkey protocol and measurement results on network/transport layer and application layer that were made with the client software and with an open-source eDonkey server we extended for these measurements. 1 Motivation and Introduction Most of the traffic in the network of access and backbone Internet service providers (ISPs) is generated by peer-to-peer (P2P) file-sharing applications [San03]. These applications are typically bandwidth greedy and generate more long-lived TCP flows than the WWW traffic that was dominating the Internet traffic before the P2P applications. To understand the influence of these applications and the characteristics of the traffic they produce and their impact on network design, capacity expansion, traffic engineering and shaping, it is important to empirically analyse the dominant file-sharing applications. The eDonkey file-sharing protocol is one of these file-sharing protocols. It is imple- mented by the original eDonkey2000 client [eDonkey] and additionally by some open- source clients like mldonkey [mlDonkey] and eMule [eMule]. According to [San03] it is with 52% of the generated file-sharing traffic the most successful P2P file-sharing net- work in Germany, even more successful than the FastTrack protocol used by the P2P client KaZaa [KaZaa] that comes to 44% of the traffic. -
Conducting and Optimizing Eclipse Attacks in the Kad Peer-To-Peer Network
Conducting and Optimizing Eclipse Attacks in the Kad Peer-to-Peer Network Michael Kohnen, Mike Leske, and Erwin P. Rathgeb University of Duisburg-Essen, Institute for Experimental Mathematics, Ellernstr. 29, 45326 Essen [email protected], [email protected], [email protected] Abstract. The Kad network is a structured P2P network used for file sharing. Research has proved that Sybil and Eclipse attacks have been possible in it until recently. However, the past attacks are prohibited by newly implemented secu- rity measures in the client applications. We present a new attack concept which overcomes the countermeasures and prove its practicability. Furthermore, we analyze the efficiency of our concept and identify the minimally required re- sources. Keywords: P2P security, Sybil attack, Eclipse attack, Kad. 1 Introduction and Related Work P2P networks form an overlay on top of the internet infrastructure. Nodes in a P2P network interact directly with each other, i.e., no central entity is required (at least in case of structured P2P networks). P2P networks have become increasingly popular mainly because file sharing networks use P2P technology. Several studies have shown that P2P traffic is responsible for a large share of the total internet traffic [1, 2]. While file sharing probably accounts for the largest part of the P2P traffic share, also other P2P applications exist which are widely used, e.g., Skype [3] for VoIP or Joost [4] for IPTV. The P2P paradigm is becoming more and more accepted also for professional and commercial applications (e.g., Microsoft Groove [5]), and therefore, P2P technology is one of the key components of the next generation internet. -
Diapositiva 1
TRANSFERENCIA O DISTRIBUCIÓN DE ARCHIVOS ENTRE IGUALES (peer-to-peer) Características, Protocolos, Software, Luis Villalta Márquez Configuración Peer-to-peer Una red peer-to-peer, red de pares, red entre iguales, red entre pares o red punto a punto (P2P, por sus siglas en inglés) es una red de computadoras en la que todos o algunos aspectos funcionan sin clientes ni servidores fijos, sino una serie de nodos que se comportan como iguales entre sí. Es decir, actúan simultáneamente como clientes y servidores respecto a los demás nodos de la red. Las redes P2P permiten el intercambio directo de información, en cualquier formato, entre los ordenadores interconectados. Peer-to-peer Normalmente este tipo de redes se implementan como redes superpuestas construidas en la capa de aplicación de redes públicas como Internet. El hecho de que sirvan para compartir e intercambiar información de forma directa entre dos o más usuarios ha propiciado que parte de los usuarios lo utilicen para intercambiar archivos cuyo contenido está sujeto a las leyes de copyright, lo que ha generado una gran polémica entre defensores y detractores de estos sistemas. Las redes peer-to-peer aprovechan, administran y optimizan el uso del ancho de banda de los demás usuarios de la red por medio de la conectividad entre los mismos, y obtienen así más rendimiento en las conexiones y transferencias que con algunos métodos centralizados convencionales, donde una cantidad relativamente pequeña de servidores provee el total del ancho de banda y recursos compartidos para un servicio o aplicación. Peer-to-peer Dichas redes son útiles para diversos propósitos. -
Forever Remembered
July 2015 Vol. 2 No. 7 National Aeronautics and Space Administration KENNEDY SPACE CENTER’S magazine FOREVER REMEMBERED Earth Solar Aeronautics Mars Technology Right ISS System & Research Now Beyond NASA’S National Aeronautics and Space Administration LAUNCH KENNEDY SPACE CENTER’S SCHEDULE SPACEPORT MAGAZINE Date: July 3, 12:55 a.m. EDT Mission: Progress 60P Cargo Craft CONTENTS Description: In early July, the Progress 60P resupply vehicle — 4 �������������������Solemn shuttle exhibit shares enduring lessons an automated, unpiloted version of the Soyuz spacecraft that is used to ����������������Flyby will provide best ever view of Pluto 10 bring supplies and fuel — launches 14 ����������������New Horizons spacecraft hones in on Pluto to the International Space Station. http://go.nasa.gov/1HUAYbO 24 ����������������Firing Room 4 used for RESOLVE mission simulation Date: July 22, 5:02 p.m. EDT 28 ����������������SpaceX, NASA will rebound from CRS-7 loss Mission: Expedition 44 Launch to 29 ����������������Backup docking adapter to replace lost IDA-1 the ISS Description: In late July, Kjell SHUN FUJIMURA 31 ����������������Thermal Protection System Facility keeping up Lindgren of NASA, Kimiya Yui of JAXA and Oleg Kononenko of am an education specialist in the Education Projects and 35 ����������������New crew access tower takes shape at Cape Roscosmos launch aboard a Soyuz I Youth Engagement Office. I work to inspire students to pursue science, technology, engineering, mathematics, or 36 ����������������Innovative thinking converts repair site into garden spacecraft from the Baikonur Cosmodrome, Kazakhstan to the STEM, careers and with teachers to better integrate STEM 38 ����������������Proposals in for new class of launch services space station. -
Emule for Dummies V 0.1 - by Ciquta
eMule for dummies v 0.1 - by ciquta (Guida funzionale ed incompleta rivolta ai neofiti della rete ed2k) Filosofia ed2k I p2p ed2k (edonkey, emule, emule plus, etc…) sono la generazione “intelligente” dei p2p: si basano sul principio dei “crediti”, ovvero chi più shara risorse, chi più invia, chi in definitiva si impegna di più a mettere a disposizione la propria banda di upload viene maggiormente premiato con slot di download. La quantità totale di upload in qualsiasi p2p è uguale identica a quella totale di download, pertanto più vengono messi a disposizione bit di upload, più vi saranno utenti connessi alla rete e maggiori saranno le possibilità di reperimento di un file e quindi di download. Il che sta a significare che gli utenti collegati avendo un ristorno in termini di download di quello che sharano e soprattutto inviano sono ben disposti a alimentare questo circolo di scambio dati, e i risultati si palpano in termini di reperibilità di file particolarmente rari e di numero delle fonti e di slot disponibili. Il software lato client è open source, pertanto vi capiterà di perdervi tra le mille versioni e relativi modding. Tuttavia la sostanza è sempre simile e notevoli cambiamenti tra l’una e l’altra sono percettibili solo tra versioni notevolmente distanti tra di loro in termini di date di sviluppo, quindi non è certo il caso di cambiare ad ogni uscita di una nuova versione, credo sia sufficiente farlo una volta ogni 3 o 4 mesi a scanso di epocali svolte nello sviluppo. Principali caratteristiche innovative Tante sono le interessanti differenze con gli altri p2p: • Gestione autonoma delle code: eMule non da modo agli utenti di “segare” gli upload, evitando quindi i classici casi di troncamento dei download tipici degli altri p2p, nei quali c’è da guerrigliare con baratti e suppliche per farsi finire un download. -
P2P Protocols
CHAPTER 1 P2P Protocols Introduction This chapter lists the P2P protocols currently supported by Cisco SCA BB. For each protocol, the following information is provided: • Clients of this protocol that are supported, including the specific version supported. • Default TCP ports for these P2P protocols. Traffic on these ports would be classified to the specific protocol as a default, in case this traffic was not classified based on any of the protocol signatures. • Comments; these mostly relate to the differences between various Cisco SCA BB releases in the level of support for the P2P protocol for specified clients. Table 1-1 P2P Protocols Protocol Name Validated Clients TCP Ports Comments Acestream Acestream PC v2.1 — Supported PC v2.1 as of Protocol Pack #39. Supported PC v3.0 as of Protocol Pack #44. Amazon Appstore Android v12.0000.803.0C_642000010 — Supported as of Protocol Pack #44. Angle Media — None Supported as of Protocol Pack #13. AntsP2P Beta 1.5.6 b 0.9.3 with PP#05 — — Aptoide Android v7.0.6 None Supported as of Protocol Pack #52. BaiBao BaiBao v1.3.1 None — Baidu Baidu PC [Web Browser], Android None Supported as of Protocol Pack #44. v6.1.0 Baidu Movie Baidu Movie 2000 None Supported as of Protocol Pack #08. BBBroadcast BBBroadcast 1.2 None Supported as of Protocol Pack #12. Cisco Service Control Application for Broadband Protocol Reference Guide 1-1 Chapter 1 P2P Protocols Introduction Table 1-1 P2P Protocols (continued) Protocol Name Validated Clients TCP Ports Comments BitTorrent BitTorrent v4.0.1 6881-6889, 6969 Supported Bittorrent Sync as of PP#38 Android v-1.1.37, iOS v-1.1.118 ans PC exeem v0.23 v-1.1.27. -
Smart Regulation in the Age of Disruptive Technologies
SMART REGULATION IN THE AGE OF DISRUPTIVE TECHNOLOGIES Andrea Renda CEPS, Duke, College of Europe 13 March 2018 A New Wave of Regulatory Governance? • First wave: structural reforms (1970s-1980s) • Privatizations, liberalizations • Second wave: regulatory reform (1980s-1990s) • Ex ante filters + “Less is more” • Third wave: regulatory governance/management (2000s) • Policy cycle concept + importance of oversight • Better is more? Alternatives to regulation, nudges, etc. • Fourth wave: coping with disruptive technologies? (2010s) Competition Collusion Access Discrimination Digital Technology as “enabler” Jobs Unemployment Enforcement Infringement Key emerging challenges • From national/EU to global governance • From ex post to ex ante/continuous market monitoring (a new approach to the regulatory governance cycle) • Need for new forms of structured scientific input (a new approach to the innovation principle, and to innovation deals) • From regulation “of” technology to regulation “by” technology • A whole new set of alternative policy options • Away from neoclassical economic analysis, towards multi-criteria analysis and enhance risk assessment/management/evaluation Alternative options & Problem definition Regulatory cycle Impact Analysis Risk assessment, Risk management Evaluation dose-response Emerging, disruptive Policy strategy and Learning technology experimentation • Scientific input and forecast • Mission-oriented options • Ongoing evaluation • Mission-led assessment • Pilots, sprints, sandboxes, tech- • Pathway updates • Long-term -
Darmstadt University of Technology the Edonkey 2000
Darmstadt University of Technology The eDonkey 2000 Protocol Oliver Heckmann, Axel Bock KOM Technical Report 08/2002 Version 0.8 December 2002 Last major update 22.05.03 Last minor update 27.06.03 E-Mail: {heckmann, bock}@kom.tu-darmstadt.de Multimedia Communications (KOM) Department of Electrical Engineering & Information Technology & Department of Computer Science Merckstraße 25 • D-64283 Darmstadt • Germany Phone: +49 6151 166150 Fax: +49 6151 166152 Email: [email protected] URL: http://www.kom.e-technik.tu-darmstadt.de/ 1. Introduction The Edonkey2000 Protocol is one of the most successful file sharing protocols and used by the original Edonkey2000 client and the open source clients mldonkey and EMule. The Edonkey2000 Protocol can be classified as decentral file sharing protocol with distributed servers. Contrary to the original Gnutella Protocol it is not completely decentral as it uses servers; contrary to the original Napster protocol it does not use a single server (farm) which is a single point of failure, instead it uses servers that are run by power users and offers mechanisms for inter-server communication. Unlinke Peer-to-Peer (P2P) proto- cols like KaZaa, Morpheus, or Gnutella the eDonkey network has a client/server based structure. The servers are slightly similar to the KaZaa supernodes, but they do not share any files, only manage the information distribution and work as several central dictionaries which hold the information about the shared files and their respective client locations. In the Edonkey network the clients are the nodes sharing data. Their files are indexed by the servers. If they want to have a piece of data (a file), they have to connect using TCP to a server or send a short search request via UDP to one or more servers to get the necessary information about other clients sharing that file. -
Copyright Infringement (DMCA)
Copyright Infringement (DMCA) Why it is important to understand the DMCA: Kent State University (KSU) is receiving more and more copyright infringement notices every semester, risking the loss of ‘safe harbor’ status. Resident students, KSU faculty, staff, and student employees, and the University itself could be at risk of costly litigation, expensive fines, damage to reputation, and possible jail time. What you need to know about KSU’s role: ● KSU is not a policing organization. ● KSU does not actively monitor computing behavior. ● KSU reacts to infringement notices generated by agents of the copyright holders ● KSU expends a significant amount of time/money protecting the identity of students by maintaining ‘safe harbor’ status KSU is ‘the good guy’ – we’re focused on educating our community What you need to know if your student receives a copyright infringement notice: They were identified as using P2P software and illegally sharing copyrighted material (whether downloading to their computer or allowing others to download from their computer). They will be informed of the notice via email, and their network connection to external resources (sites outside of KSU) will be disabled to maintain ‘safe harbor’ status until such time as they have complied with the University’s requirements under the DMCA. They can face sanctions ranging from blocked connectivity to dismissal from the University. Definition of terms: DMCA: The Digital Millennium Copyright Act of 1998 was signed into law in the United States to protect the intellectual property rights of copyright holders of electronic media (music, movies, software, games, etc.). The DMCA allows KSU to operate as an OSP. -
Investigating the User Behavior of Peer-To-Peer File Sharing Software
www.ccsenet.org/ijbm International Journal of Business and Management Vol. 6, No. 9; September 2011 Investigating the User Behavior of Peer-to-Peer File Sharing Software Shun-Po Chiu (Corresponding author) PhD candidate, Department of Information Management National Central University, Jhongli, Taoyuan, Taiwan & Lecture, Department of Information Management Vanung University, Jhongli, Taoyuan, Taiwan E-mail: [email protected] Huey-Wen Chou Professor, Department of Information Management National Central University, Jhongli, Taoyuan, Taiwan E-mail: [email protected] Received: March 26, 2011 Accepted: May 10, 2011 doi:10.5539/ijbm.v6n9p68 Abstract In recent years, peer-to-peer file sharing has been a hotly debated topic in the fields of computer science, the music industry, and the movie industry. The purpose of this research was to examine the user behavior of peer-to-peer file-sharing software. A methodology of naturalistic inquiry that involved qualitative interviews was used to collect data from 21 university students in Taiwan. The results of the study revealed that a substantial amount of P2P file-sharing software is available to users. The main reasons for using P2P file-sharing software are to save money, save time, and to access files that are no longer available in stores. A majority of respondents use P2P file-sharing software to download music, movies, and software, and the respondents generally perceive the use of such software as neither illegal nor unethical. Furthermore, most users are free-riders, which means that they do not contribute files to the sharing process. Keywords: Peer to peer, File sharing, Naturalistic inquiry 1. Introduction In recent years, Peer-to-Peer (P2P) network transmission technology has matured. -
Instructions for Using Your PC ǍʻĒˊ Ƽ͔ūś
Instructions for using your PC ǍʻĒˊ ƽ͔ūś Be careful with computer viruses !!! Be careful of sending ᡅĽ/ͼ͛ᩥਜ਼ƶ҉ɦϹ࿕ZPǎ Ǖễƅ͟¦ᰈ Make sure to install anti-virus software in your PC personal profile and ᡅƽញƼɦḳâ 5☦ՈǍʻPǎᡅ !!! information !!! It is very dangerous !!! ΚTẝ«ŵ┭ՈT Stop violation of copyright concerning illegal acts of ơųጛňƿՈ☢ͩ ⚷<ǕOᜐ&« transmitting music and ₑᡅՈϔǒ]ᡅ others through the Don’t forget to backup ඡȭ]dzÑՈ Internet !!! important data !!! Ȥᩴ̣é If another person looks in at your E-mail, it’s a big ὲâΞȘᝯɣr problem !!! Don’t install software in dz]ǣrPǎᡅ ]ᡅîPéḳâ╓ ͛ƽញ4̶ᾬϹ࿕ ۅTake care of keeping your some other PCs without ˊΙǺ password !!! permission !!! ₐ Stop sending the followings !!! ŌՈϹوInformation against public order and Somebody targets on your PC for Pǎ]ᡅǕễạǑ͘͝ࢭÛ ΞȘƅ¦Ƿń morals illegal access !!! Ոƅ͟ǻᢊ᫁ĐՈ ࿕Ϭ⓶̗ʵ£࿁îƷljĈ Information about discrimination, Shut out those attacks with firewall untruth and bad reputation against a !!! Ǎʻ ᰻ǡT person ᤘἌ᭔ ᆘჍഀ ጠᅼૐᾑ ᭼᭨᭞ᮞęɪᬡᬡǰɟ ᆘȐೈ ᾑ ጠᅼ3ظ ᤘἌ᭔ ǰɟᯓۀ᭞ᮞᮐᮧ᭪᭑ᮖ᭤ᬞᬢ ഄᅤ Έʡȩîᬡ͒ͮᬢـ ᅼܘᆘȐೈ ǸᆜሹظᤘἌ᭔ ཬᴔ ᭼᭨᭞ᮞᬞᬢŽᬍ᭑ᮖ᭤̛ɏ᭨ᮀ᭳ᭅ ரἨ᳜ᄌ࿘Π ؼ˨ഀ ୈὼ$ ഄጵ↬3L ʍ୰ᬞᯓ ᄨῼ33 Ȋථᬚᬌᬻᯓ ഄ˽ ઁǢᬝຨϙଙͮـᅰჴڹެ ሤᆵͨ˜Ɍ ጵႸᾀ żᆘ᭔ ᬝᬜΪ̎UઁɃᬢ ࡶ୰ᬝ᭲ᮧ᭪ᬢ ᄨؼᾭᄨ ᾑ ٕᅨ ΰ̛ᬞ᭫ᮌᯓ ᭻᭮᭚᭮ᮂᭅ ሬČ ཬȴ3 ᾘɤɟ3 Ƌᬿᬍᬞᯓ ᬿᬒᬼۏąഄᅼ Ѹᆠᅨ ᮌᮧᮖᭅ ᛴܠ ఼ ᆬð3 ᤘἌ᭔ ƂŬᯓ ᭨ᮀ᭳᭑᭒ᭅƖ̳ᬞ ĩᬡ᭼᭨᭞ᮞᬞٴ ரἨ᳜ᄌ࿘ ᭼᭤ᮚᮧ᭴ᬡɼǂᬢ ڹެ ᵌೈჰ˨ ˜ϐ ᛄሤ↬3 ᆜೈᯌ ϤᏤ ᬊᬖᬽᬊᬻᯓ ᮞ᭤᭳ᮧᮖᬊᬝᬚ ሬČʀ ͌ǜ ąഄᅼ ΰ̛ᬞ ޅᬝᬒᬡ᭼᭨᭞ᮞᭅ ᤘἌ᭔Π ͬϐʼ ᆬð3 ʏͦᬞɃᬌᬾȩî ēᬖᬙᬾᯓ ܘˑˑᏬୀΠ ᄨؼὼ ሹ ߍɋᬞᬒᬾȩî ᮀᭌ᭑᭔ᮧᮖwƫᬚފᴰᆘ࿘ჸ $±ᅠʀ =Ė ܘČٍᅨ ᙌۨ5ࡨٍὼ ሹ ഄϤᏤ ᤘἌ᭔ ኩ˰Π3 ᬢ͒ͮᬊᬝᯓ ᭢ᮎ᭮᭳᭑᭳ᬊᬻᯓـ ʧʧ¥¥ᬚᬚP2PP2P᭨᭨ᮀᮀ᭳᭳᭑᭑᭒᭒ᬢᬢ DODO NOTNOT useuse P2PP2P softwaresoftware ̦̦ɪɪᬚᬚᬀᬀᬱᬱᬎᬎᭆᭆᯓᯓ inin campuscampus networknetwork !!!! Z ʧ¥᭸᭮᭳ᮚᮧ᭚ᬞᬄᬾͮᬢȴƏΜˉ᭢᭤᭱ Z All communications in our campus network are ᬈᬿᬙᬱᬌʧ¥ᬚP2P᭨ᮀ always monitored automatically. -
Copyright Infringement on Music, Movie and Software in the Internet (Illegal File Sharing and Fair Use Practices in Indonesia, Japan and United States of America)
Copyright Infringement on Music, Movie and Software in the Internet (Illegal File Sharing and Fair Use Practices in Indonesia, Japan and United States of America) A thesis submitted for the degree of Doctor Philosophy in Law Bayu Sujadmiko 1221072013 Kanazawa University Graduate School of Human and Socio-Environmental Studies 2015/2016 要旨 インターネット技術は、インドネシア、日本、米国を含む世界中で広く利用され ている。発展につれて、それら応用技術は人類の福祉にとって不法な行為を誘発 する「両刃の剣」となった。デジタル化可能なほとんどの著作物は、インターネ ットを介した複製及び物理的侵害の蓋然性にさらされることとなった。違法ダウ ンロード、アップロード、ファイル共有が市民の間に広がったが、インドネシア の立法は、インターネット技術の進歩への反応が鈍かった。その結果、著作権産 業がフラッシュ・ドライバ、スマートフォン、タブレットなどの高度モバイル技 術というデジタル著作権侵害の新しい成長の問題に直面しているのにもかかわら ず、対策は、違法コンテンツや海賊製品の普及に対してのみ行われている。いく つかの国では、これらのデバイスは、それらが販売される前から違法なコンテン ツをインストールされている。政府によれば、彼らは物理的及びオンラインの海 賊行為を停止するための解決法を探している。本論文は、日本、米国、インドネ シアにおける著作権法のシステムを比較する。また、国際的な規制が、刑事罰と 罰金の執行においてこれら各国にどのような影響を与えるかを説明する。著作権 法に関する立法のみではインターネット上の課題には答えられないことを示す点 でも有益である。技術的、手続的、社会的、制度的に効率的な執行システムの具 体的な調和が必要とされている。 Abstract The utilization of Internet technology is widely practiced by the entire population of the globe, including Indonesia, Japan and United States. During its development, applied technology became a “double-edged sword”, in addition to the mankind welfare; it is used for unlawful acts. Most copyrighted works that can be reformed to digitize have big probability to duplicate over the Internet and physical piracy. Illegal downloading, uploading and file sharing became common activities among the citizenry. Indonesian legislation was low respond to follow the advance of Internet technology. Consequently, legal enforcement is performed only among the spread of illegal contents and pirate products. While, copyright industries face new growing problems with digital piracy; flash drivers, smartphones, tablets and other high mobile technologies. In some countries, these devices are preloaded with illegal content even before they are sold. Accompanied by the government, they try to find the solutions to stop the physical and online piracy.