Characterization of Transition Edge Sensors for the Millimeter Bolometer Array Camera on the Atacama Cosmology Telescope
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Development of Phonon-Mediated Cryogenic
DEVELOPMENT OF PHONON-MEDIATED CRYOGENIC PARTICLE DETECTORS WITH ELECTRON AND NUCLEAR RECOIL DISCRIMINATION a dissertation submitted to the department of physics and the committee on graduate studies of stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy Sae Woo Nam December, 1998 c Copyright 1999 by Sae Woo Nam All Rights Reserved ii I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy. Blas Cabrera (Principal Advisor) I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy. Douglas Osheroff I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and in quality, as a dissertation for the degree of Doctor of Philosophy. Roger Romani Approved for the University Committee on Graduate Studies: iii Abstract Observations have shown that galaxies, including our own, are surrounded by halos of "dark matter". One possibility is that this may be an undiscovered form of matter, weakly interacting massive particls (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultane- ously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate betweeen electron recoil events (background radiation) and nuclear recoil events (dark matter events). -
Ultimate Performance of a Cold-Electron Bolometer with Strong Electrothermal Feedback
15th International Symposium on Space Terahertz Technology Ultimate Performance of a Cold-Electron Bolometer with Strong Electrothermal Feedback Leonid Kuzmin Chalmers University of Technology, Department of Microtechnology and Nanoscience 41296 Gothenburg, Sweden ABSTRACT A novel concept of the Cold Electron Bolometer (CEB) with strong electrothermal feedback has been proposed. The concept is based on direct electron cooling of the absorber that serves as negative electrothermal feedback for incoming signal. This feedback is analogous to TES (transition edgesensor) but additional dc heating is replaced by deep electron cooling to minimum temperature. It could mean a principle breakthrough in realization of supersensitive detectors. Noise properties are considerably improved by decreasing the electron temperature. The loop gain of electrothermal feedback could exceed 1000. The response time is reduced by electrothermal feedback to 1Ons in comparison with the intrinsic e-ph time constant of 10tts. The CEl3 gives opportunity to increase dynamic range by removing all incoming power from supersensitive absorber to the next stage of readout system (SQUID) with higher dynamic range. Saturation problems are not so severe for CEB as for TES: after exceeding the cooling power there is only slight deviation from linear dependence for voltage response. The full saturation comes at the level of 100pW when temperature of absorber achieves Tc of Al. Ultimate performance of the CEB is determined by shot noise of the signal readout. For background load Po -19 1/2 ---10fW- and quantization level Te= 50mK, the limit NEP is equal to 10 W/Hz . The estimations show that it is realistic to achieve ultimate NEP at 100 mK with SQUID readout system and NEP=10 -18W/Hz1/2 at 300mK for background load of 10fW. -
Arxiv:2107.12493V1 [Physics.Ins-Det] 26 Jul 2021 Compensates for Changes in Incident Power, Which Increases the Linearity of the Bolometer
Strong Negative Electrothermal Feedback in Thermal Kinetic Inductance Detectors Shubh Agrawal,1, a) Bryan Steinbach,1, b) James J. Bock,1, 2 Clifford Frez,2 Lorenzo Minutolo,1 Hien Nguyen,2 Roger O’Brient,2 Anthony Turner,2 and Albert Wandui1 1)Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA 2)Jet Propulsion Lab, Pasadena, CA, 91109, USA (Dated: July 28, 2021) We demonstrate strong negative electrothermal feedback accelerating and linearizing the response of a thermal kinetic inductance detector (TKID). TKIDs are a proposed highly multiplexable replacement to transition-edge sensors and measure power through the temperature-dependent resonant frequency of a superconducting microresonator bolometer. At high readout probe power and probe frequency detuned from the TKID resonant frequency, we observe electrother- mal feedback loop gain up to L ≈ 16 through measuring the reduction of settling time. We also show that the detector response has no detectable non-linearity over a 38% range of incident power and that the noise-equivalent power is below the design photon noise. I. INTRODUCTION AND MOTIVATION feedback produces fast, linear, and photon noise limited sen- sors for millimeter-wave detection10–12 and X-ray calorime- 13 We present observations of strong negative electrothermal ters with eV energy resolution . feedback in a thermal kinetic inductance detector (TKID). 14 TKIDs are cryogenic bolometers that detect minute power Lindeman proposed a mechanism through which elec- fluctuations by measuring the temperature fluctuations of a trothermal feedback would occur in a TKID when the fre- suspended absorber1–6. The suspended absorber is connected quency of the readout probe signal was detuned from the res- to a thermal bath with a weak thermal link so that the inci- onant frequency. -
Electrothermal Feedback in Kinetic Inductance Detectors
Electrothermal Feedback in Kinetic Inductance Detectors T Guruswamy,∗ C N Thomas, S Withington, and D J Goldie Quantum Sensors Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK (Dated: August 3, 2021) In Kinetic Inductance Detectors (KIDs) and other similar applications of superconducting microres- onators, both the large and small-signal behaviour of the device may be affected by electrothermal feedback. Microwave power applied to read out the device is absorbed by and heats the superconduc- tor quasiparticles, changing the superconductor conductivity and hence the readout power absorbed in a positive or negative feedback loop. In this work, we explore numerically the implications of an extensible theoretical model of a generic superconducting microresonator device for a typical KID, incorporating recent work on the power flow between superconductor quasiparticles and phonons. This model calculates the large-signal (changes in operating point) and small-signal behaviour of a device, allowing us to determine the effect of electrothermal feedback on device responsivity and noise characteristics under various operating conditions. We also investigate how thermally isolating the device from the bath, for example by designing the device on a membrane only connected to the bulk substrate by thin legs, affects device performance. We find that at a typical device operating point, positive electrothermal feedback reduces the effective thermal conductance from the superconductor quasiparticles to the bath, and so increases responsivity to signal (pair-breaking) power, increases noise from temperature fluctuations, and decreases the Noise Equivalent Power (NEP). Similarly, increasing the thermal isolation of the device while keeping the quasiparticle temperature constant decreases the NEP, but also decreases the device response bandwidth. -
Photon-Noise-Limited Cold-Electron Bolometer Based on Strong Electron Self-Cooling for High- Performance Cosmology Missions
ARTICLE https://doi.org/10.1038/s42005-019-0206-9 OPEN Photon-noise-limited cold-electron bolometer based on strong electron self-cooling for high- performance cosmology missions L.S. Kuzmin1,2, A.L. Pankratov2,3, A.V. Gordeeva2,3, V.O. Zbrozhek2, V.A. Shamporov2,3, L.S. Revin2,3, 1234567890():,; A.V. Blagodatkin2,3, S. Masi4 & P. de Bernardis4 Bolometers for balloon and space missions have seen extensive development because of their capacity to test primordial conditions of the Universe. The major improvements consist in lowering the operating temperature to reach higher sensitivities. Here we show that an array of 192 cold-electron bolometers (CEB) demonstrates photon-noise-limited operation at the cryostat temperature of 310 mK due to effective self-cooling of the absorber. The direct electron cooling of nanoabsorber placed between normal metal - insulator - superconductor junctions has considerably higher efficiency than indirect cooling through massive suspended platform, that requires overcoming a weak electron-phonon conductance. The electron temperature reached 120 mK without a power load, and 225 mK with a 60 pW power load with self-noise of a single bolometer below 3 Á 10À18 WHzÀ1=2 at a 0.01 pW power load. This bolometer works at electron temperature less than phonon temperature, thus being a good candidate for future space missions without the use of dilution refrigerators. 1 Chalmers University of Technology, 41296 Gothenburg, Sweden. 2 Nizhny Novgorod State Technical University n.a. R.E. Alekseev, GSP-41, Nizhny Novgorod 603950, Russia. 3 Institute for Physics of Microstructures of RAS, GSP-105, Nizhny Novgorod 603950, Russia. -
Photon-Noise-Limited Cold-Electron Bolometer Based on Strong Electron Self-Cooling for High- Performance Cosmology Missions
ARTICLE https://doi.org/10.1038/s42005-019-0206-9 OPEN Photon-noise-limited cold-electron bolometer based on strong electron self-cooling for high- performance cosmology missions L.S. Kuzmin1,2, A.L. Pankratov2,3, A.V. Gordeeva2,3, V.O. Zbrozhek2, V.A. Shamporov2,3, L.S. Revin2,3, 1234567890():,; A.V. Blagodatkin2,3, S. Masi4 & P. de Bernardis4 Bolometers for balloon and space missions have seen extensive development because of their capacity to test primordial conditions of the Universe. The major improvements consist in lowering the operating temperature to reach higher sensitivities. Here we show that an array of 192 cold-electron bolometers (CEB) demonstrates photon-noise-limited operation at the cryostat temperature of 310 mK due to effective self-cooling of the absorber. The direct electron cooling of nanoabsorber placed between normal metal - insulator - superconductor junctions has considerably higher efficiency than indirect cooling through massive suspended platform, that requires overcoming a weak electron-phonon conductance. The electron temperature reached 120 mK without a power load, and 225 mK with a 60 pW power load with self-noise of a single bolometer below 3 Á 10À18 WHzÀ1=2 at a 0.01 pW power load. This bolometer works at electron temperature less than phonon temperature, thus being a good candidate for future space missions without the use of dilution refrigerators. 1 Chalmers University of Technology, 41296 Gothenburg, Sweden. 2 Nizhny Novgorod State Technical University n.a. R.E. Alekseev, GSP-41, Nizhny Novgorod 603950, Russia. 3 Institute for Physics of Microstructures of RAS, GSP-105, Nizhny Novgorod 603950, Russia.