Continuous Linear and Bilinear Schur Multipliers and Applications to Perturbation Theory Clément Coine

Total Page:16

File Type:pdf, Size:1020Kb

Continuous Linear and Bilinear Schur Multipliers and Applications to Perturbation Theory Clément Coine Continuous linear and bilinear Schur multipliers and applications to perturbation theory Clément Coine To cite this version: Clément Coine. Continuous linear and bilinear Schur multipliers and applications to perturbation theory. Mathematics [math]. Université Bourgogne-Franche-Comté, 2017. English. tel-02177442 HAL Id: tel-02177442 https://tel.archives-ouvertes.fr/tel-02177442 Submitted on 9 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École doctorale Carnot-Pasteur THÈSE DE DOCTORAT présentée par CLÉMENT COINE Pour obtenir le grade de Docteur de Mathématiques de l’Université Bourgogne Franche-Comté Continuous linear and bilinear Schur multipliers and applications to perturbation theory Thèse soutenue le 30 Juin 2017, devant le jury composé de : Isabelle CHALENDAR Examinateur Christian LE MERDY Directeur de thèse Eric RICARD Rapporteur Anna SKRIPKA Rapporteur Ivan TODOROV Examinateur Quanhua XU Examinateur et Président du jury ii iii REMERCIEMENTS Je tiens tout d’abord à remercier Christian Le Merdy pour m’avoir initié au monde de la recherche. Il a été très présent durant ces trois années et m’a appris énormément de choses, toujours avec pédagogie. Il a partagé avec moi ses connaissances et de nom- breux conseils sur le métier de chercheur. Il fut une grande source d’inspiration et le sera encore dans le futur. Je voudrais ensuite remercier Isabelle Chalendar, Eric Ricard, Anna Skripka, Ivan Todorov et Quanhua Xu pour avoir accepté de faire partie de mon jury. Ça a été pour moi un grand honneur et un plaisir de partager mon travail avec eux. Je remercie tout particulièrement Anna et Eric pour leur travail de rapporteur. Une partie de cette thèse a été réalisée en collaboration avec Denis Potapov, Anna Skripka, Fedor Sukochev et Anna Tomskova. Je les remercie d’avoir partagé ce travail avec moi. Je remercie tout particulièrement Anna Tomskova et Fedor Sukochev pour leurs visites en France durant lesquelles ils m’ont initié aux problèmes de Peller. Le travail de cette thèse a été très influencé par cette question et leur connaissance du su- jet a permis une collaboration fructueuse. J’ai eu la chance durant cette thèse d’effectuer un séjour de recherche de deux mois à Albuquerque. Je remercie chaleureusement Anna Skripka pour son accueil et pour avoir échangé ses connaissances avec moi. Nous avons pu discuter sur différentes questions mathématiques très intéressantes et cette collaboration a abouti sur l’écriture d’un article. Je remercie également Arup pour m’avoir fait visité une partie de la ville et pour les conversations que nous avons eues autour des succulents mets mexicains. Merci au Laboratoire de Mathématiques de Besançon de m’avoir accueilli et aux différents membres qui ont toujours été présents en cas de problème ou de question. Je tiens également à remercier l’équipe d’analyse fonctionnelle au sein de laquelle j’ai évolué et qui sait créer un cadre de travail très stimulant. Je remercie tous les excellents professeurs que j’ai rencontrés au cours de ma scolar- ité et qui ont renforcé mon goût pour les mathématiques, notamment les professeurs d’analyse qui m’ont toujours inspiré. iv Merci à toute l’équipe de doctorants, post-docs et ATER pour l’ambiance et les bons moments passés ensemble. Merci au bureau 401B pour avoir crée un climat de travail très agréable. Je remercie particulièrement Colin pour les fous rires et pour avoir tou- jours une bouteille d’eau sur lui, Marine pour les 8 années passées ensemble ainsi que pour la décoration du bureau et Olga pour son amitié et les nombreuses heures passées à discuter de tout et de rien. Merci également à Aude, Charlotte et Cyril qui ont été présents pour m’aider pendant ces trois années. Je remercie également tous les autres doctorants et amis du qui ont fait partie du labo : Alessandro, Haonan, Isabelle, Jo- hann, Lucie, Michael, Michel, Othman, Pammella, Quentin, Runlian, Sabrina, Youssef. Je remercie également Eva pour les discussions autour de crêpes, et Kamilia pour son amitié et les très bons moments passés lors des conférences. Enfin, je veux remercier tous mes proches, mes amis et ma famille, qui m’ont permis de faire cette thèse dans les meilleures conditions. Un merci tout particulier à mes parents, mes sœurs et mon grand-père pour avoir été très présents tout au long de mes études et pour m’avoir encouragé lors de ces trois années de thèse. Merci également aux petits nouveaux, Julia et Lucas, pour le bonheur qu’ils procurent. v Contents Introduction1 1 Résumé de la thèse...............................1 2 Summary of the thesis.............................4 3 Notations.....................................6 1 Preliminaries9 1.1 Tensor products.................................9 1.1.1 Projective and injective tensor product................9 1.1.2 Lapresté norms............................. 11 1.1.3 Haagerup tensor product....................... 12 1.1.4 Dual norm................................ 15 1.1.5 (p; q)−Factorable operators....................... 15 1.2 Schatten classes................................. 18 1.2.1 Definition and duality......................... 18 1.2.2 Tensor products of Hilbert space operators and trace duality... 19 p 1.3 Lσ-spaces and duality............................. 22 1 ∗ 1.4 Measurable factorization in Lσ (Ω; Γ2(E; F )) ................ 25 1.4.1 The main result............................. 25 1.4.2 A special case.............................. 32 2 Linear Schur multipliers 35 2.1 Classical Schur multipliers........................... 35 2.2 Continuous Schur multipliers on B(L2) ................... 36 2.3 Schur multipliers on B(Lp;Lq) ......................... 38 2.3.1 Definition and connection with the classical Schur multipliers.. 38 2.3.2 Schur multipliers and factorization.................. 42 2.3.3 An application : the main triangle projection............ 48 2.4 Inclusion theorems............................... 50 2.5 Perspectives................................... 54 3 Bilinear Schur multipliers 57 3.1 Definition and notations............................ 57 3.2 Bilinear Schur multipliers valued in S1 .................... 58 3.3 Continuous bilinear Schur multipliers.................... 61 3.3.1 Definition................................ 62 3.3.2 S1-boundedness............................ 64 3.4 Perspectives................................... 68 vi 4 Multiple Operator Integrals 69 4.1 Definition.................................... 70 4.1.1 Normal operators and scalar-valued spectral measures...... 70 4.1.2 Multiple operator integrals associated with operators....... 71 4.1.3 Passing from operators to functions................. 77 4.2 Finite dimensional case............................. 79 4.2.1 Double operator integrals....................... 79 4.2.2 Triple operator integrals........................ 81 4.3 Characterization of S2 × S2 !S1 boundedness............... 82 4.4 Complete boundedness of triple operator integrals............. 87 4.5 Perspectives................................... 92 5 Resolution of Peller’s problems 93 5.1 Statement of the problems........................... 93 5.2 Perturbation theory for selfadjoint operators................ 95 5.2.1 Approximation in multiple operator integrals........... 97 5.2.2 Proof of the main result........................ 100 5.2.3 Connection with Peller’s problem.................. 106 5.3 The self-adjoint case.............................. 107 5.3.1 A few properties of triple operator integrals............ 107 5.3.2 Finite-dimensional constructions................... 111 5.3.3 A solution to Peller’s problem for selfadjoint operators...... 121 5.4 The unitary case................................. 122 5.4.1 Preliminary results........................... 122 5.4.2 Finite-dimensional constructions................... 126 5.4.3 A solution to Peller’s problem for unitary operators........ 130 5.5 Perspectives................................... 134 Bibliography 135 1 Introduction 1 Résumé de la thèse Le travail de cette thèse a été dans un premier temps motivé par la résolution du prob- lème de Peller concernant la formule de trace de Koplienko-Neidhardt. Celui-ci est en lien avec les perturbations du second ordre pour le calcul fonctionnel. En effet, le problème était de déterminer, pour une fonction f 2 C2(R) dont la dérivée seconde est bornée, et pour deux opérateurs autoadjoints A et K sur un espace de Hilbert séparable H tels que K 2 S2(H) est un opérateur de Hilbert-Schmidt, si l’opérateur d f(A + K) − f(A) − f(A + tK) (1) dt t=0 appartient à l’espace S1(H) des opérateurs à trace. Cette question a été soulevée par V. Peller dans [Pel05], où il a également conjecturé que la réponse à cette question était négative. Pour résoudre ce problème, il est important de comprendre tout d’abord dans quels cas l’opérateur (1) est bien défini. Lorsque A est borné ou quand f a une dérivée bornée, l’opérateur est bien défini et appartient à S2(H). Sinon, le sens de (1) n’est pas clair, mis à part dans certains cas particuliers. Peller a par exemple défini dans [Pel05] 2 l’opérateur (1) par approximation
Recommended publications
  • Projective Tensor Products, Injective Tensor Products, and Dual Relations on Operator Spaces
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 1-1-2006 Projective tensor products, injective tensor products, and dual relations on operator spaces. Fuhua Chen University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Chen, Fuhua, "Projective tensor products, injective tensor products, and dual relations on operator spaces." (2006). Electronic Theses and Dissertations. 7096. https://scholar.uwindsor.ca/etd/7096 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. P r o je c t iv e T e n so r P r o d u c t s , In je c t iv e T e n so r P r o d u c t s , a n d D ual R elatio ns on O p e r a t o r S paces by Fuhua Chen A Thesis Submitted to the Faculty of Graduate Studies and Research through Mathematics and Statistics in Partial Fulfillment of the Requirements of the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2006 © 2006 Fuhua Chen Reproduced with permission of the copyright owner.
    [Show full text]
  • Grothendieck's Tensor Norms
    Grothendieck's tensor norms Vandana Shivaji College, University of Delhi, India April, 2015 Vandana Grothendieck's tensor norms Overview Grothendieck's tensor norms Operator spaces Tensor products of Operator spaces Schur tensor product Vandana Grothendieck's tensor norms Grothendieck's tensor norms A Banach space is a complete normed space. For Banach spaces X and Y , X ⊗ Y = spanfx ⊗ y : x 2 X; y 2 Y g, where x ⊗ y is the functional on B(X∗ × Y ∗; C) given by x ⊗ y(f; g) = f(x)g(y) for f 2 X∗ and g 2 Y ∗. For a pair of arbitrary Banach spaces X and Y , the norm on X ⊗ Y induced by the embedding X ⊗ Y ! B(X∗ × Y ∗; C) is known as Banach space injective tensor norm. That is , for u 2 X ⊗ Y , the Banach space injective tensor norm is defined to be n n o X ∗ ∗ kukλ = sup f(xi)g(yi) : f 2 X1 ; g 2 Y1 : i=1 Vandana Grothendieck's tensor norms Grothendieck's tensor norms Question is How can we norm on X ⊗ Y ? n X kx ⊗ ykα ≤ kxkkyk, then, for u = xi ⊗ yi, by triangle's i=1 n X inequality it follows that kukα ≤ kxikkyik. Since this holds for i=1 n X every representation of u, so we have kukα ≤ inff kxikkyikg. i=1 For a pair of arbitrary Banach spaces X and Y and u an element in the algebraic tensor product X ⊗ Y , the Banach space projective tensor norm is defined to be n n X X kukγ = inff kxikkyik : u = xi ⊗ yi; n 2 Ng: i=1 i=1 X ⊗γ Y will denote the completion of X ⊗ Y with respect to this norm.
    [Show full text]
  • Distinguished Property in Tensor Products and Weak* Dual Spaces
    axioms Article Distinguished Property in Tensor Products and Weak* Dual Spaces Salvador López-Alfonso 1 , Manuel López-Pellicer 2,* and Santiago Moll-López 3 1 Department of Architectural Constructions, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Emeritus and IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain 3 Department of Applied Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] 0 Abstract: A local convex space E is said to be distinguished if its strong dual Eb has the topology 0 0 0 0 b(E , (Eb) ), i.e., if Eb is barrelled. The distinguished property of the local convex space Cp(X) of real- valued functions on a Tychonoff space X, equipped with the pointwise topology on X, has recently aroused great interest among analysts and Cp-theorists, obtaining very interesting properties and nice characterizations. For instance, it has recently been obtained that a space Cp(X) is distinguished if and only if any function f 2 RX belongs to the pointwise closure of a pointwise bounded set in C(X). The extensively studied distinguished properties in the injective tensor products Cp(X) ⊗# E and in Cp(X, E) contrasts with the few distinguished properties of injective tensor products related to the dual space Lp(X) of Cp(X) endowed with the weak* topology, as well as to the weak* dual of Cp(X, E). To partially fill this gap, some distinguished properties in the injective tensor product space Lp(X) ⊗# E are presented and a characterization of the distinguished property of the weak* dual of Cp(X, E) for wide classes of spaces X and E is provided.
    [Show full text]
  • A Note on Bilinear Forms
    A note on bilinear forms Darij Grinberg July 9, 2020 Contents 1. Introduction1 2. Bilinear maps and forms1 3. Left and right orthogonal spaces4 4. Interlude: Symmetric and antisymmetric bilinear forms 14 5. The morphism of quotients I 15 6. The morphism of quotients II 20 7. More on orthogonal spaces 24 1. Introduction In this note, we shall prove some elementary linear-algebraic properties of bi- linear forms. These properties generalize some of the standard facts about non- degenerate bilinear forms on finite-dimensional vector spaces (e.g., the fact that ? V? = V for a vector subspace V of a vector space A equipped with a nonde- generate symmetric bilinear form) to bilinear forms which may be degenerate. They are unlikely to be new, but I have not found them explored anywhere, whence this note. 2. Bilinear maps and forms We fix a field k. This field will be fixed for the rest of this note. The notion of a “vector space” will always be understood to mean “k-vector space”. The 1 A note on bilinear forms July 9, 2020 word “subspace” will always mean “k-vector subspace”. The word “linear” will always mean “k-linear”. If V and W are two k-vector spaces, then Hom (V, W) denotes the vector space of all linear maps from V to W. If S is a subset of a vector space V, then span S will mean the span of S (that is, the subspace of V spanned by S). We recall the definition of a bilinear map: Definition 2.1.
    [Show full text]
  • On the Geometry of Projective Tensor Products
    ON THE GEOMETRY OF PROJECTIVE TENSOR PRODUCTS OHAD GILADI, JOSCHA PROCHNO, CARSTEN SCHUTT,¨ NICOLE TOMCZAK-JAEGERMANN, AND ELISABETH WERNER n Abstract. In this work, we study the volume ratio of the projective tensor products `p ⊗π n n `q ⊗π `r with 1 ≤ p ≤ q ≤ r ≤ 1. We obtain asymptotic formulas that are sharp in almost all cases. As a consequence of our estimates, these spaces allow for a nearly Euclidean decomposition of Kaˇsintype whenever 1 ≤ p ≤ q ≤ r ≤ 2 or 1 ≤ p ≤ 2 ≤ r ≤ 1 and q = 2. Also, from the Bourgain-Milman bound on the volume ratio of Banach spaces in terms of their cotype 2 constant, we obtain information on the cotype of these 3-fold projective tensor products. Our results naturally generalize to k-fold products `n ⊗ · · · ⊗ `n with k 2 p1 π π pk N and 1 ≤ p1 ≤ · · · ≤ pk ≤ 1. 1. Introduction In the geometry of Banach spaces the volume ratio vr(X) of an n-dimensional normed space X is defined as the n-th root of the volume of the unit ball in X divided by the volume of its John ellipsoid. This notion plays an important role in the local theory of Banach spaces and has significant applications in approximation theory. It formally originates in the works [Sza78] and [STJ80], which were influenced by the famous paper of B. Kaˇsin[Kaˇs77] on nearly Euclidean orthogonal decompositions. Kaˇsindiscovered that for arbitrary n 2 N, 2n the space `1 contains two orthogonal subspaces which are nearly Euclidean, meaning that n their Banach-Mazur distance to `2 is bounded by an absolute constant.
    [Show full text]
  • Bornologically Isomorphic Representations of Tensor Distributions
    Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products.
    [Show full text]
  • Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity
    Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity Josse van Dobben de Bruyn 24 September 2020 Abstract The tensor product of two ordered vector spaces can be ordered in more than one way, just as the tensor product of normed spaces can be normed in multiple ways. Two natural orderings have received considerable attention in the past, namely the ones given by the projective and injective (or biprojective) cones. This paper aims to show that these two cones behave similarly to their normed counterparts, and furthermore extends the study of these two cones from the algebraic tensor product to completed locally convex tensor products. The main results in this paper are the following: (i) drawing parallels with the normed theory, we show that the projective/injective cone has mapping properties analogous to those of the projective/injective norm; (ii) we establish direct formulas for the lineality space of the projective/injective cone, in particular providing necessary and sufficient conditions for the cone to be proper; (iii) we show how to construct faces of the projective/injective cone from faces of the base cones, in particular providing a complete characterization of the extremal rays of the projective cone; (iv) we prove that the projective/injective tensor product of two closed proper cones is contained in a closed proper cone (at least in the algebraic tensor product). 1 Introduction 1.1 Outline Tensor products of ordered (topological) vector spaces have been receiving attention for more than 50 years ([Mer64], [HF68], [Pop68], [PS69], [Pop69], [DS70], [vGK10], [Wor19]), but the focus has mostly been on Riesz spaces ([Sch72], [Fre72], [Fre74], [Wit74], [Sch74, §IV.7], [Bir76], [FT79], [Nie82], [GL88], [Nie88], [Bla16]) or on finite-dimensional spaces ([BL75], [Bar76], [Bar78a], [Bar78b], [Bar81], [BLP87], [ST90], [Tam92], [Mul97], [Hil08], [HN18], [ALPP19]).
    [Show full text]
  • A Symplectic Banach Space with No Lagrangian Subspaces
    transactions of the american mathematical society Volume 273, Number 1, September 1982 A SYMPLECTIC BANACHSPACE WITH NO LAGRANGIANSUBSPACES BY N. J. KALTON1 AND R. C. SWANSON Abstract. In this paper we construct a symplectic Banach space (X, Ü) which does not split as a direct sum of closed isotropic subspaces. Thus, the question of whether every symplectic Banach space is isomorphic to one of the canonical form Y X Y* is settled in the negative. The proof also shows that £(A") admits a nontrivial continuous homomorphism into £(//) where H is a Hilbert space. 1. Introduction. Given a Banach space E, a linear symplectic form on F is a continuous bilinear map ß: E X E -> R which is alternating and nondegenerate in the (strong) sense that the induced map ß: E — E* given by Û(e)(f) = ü(e, f) is an isomorphism of E onto E*. A Banach space with such a form is called a symplectic Banach space. It can be shown, by essentially the argument of Lemma 2 below, that any symplectic Banach space can be renormed so that ß is an isometry. Any symplectic Banach space is reflexive. Standard examples of symplectic Banach spaces all arise in the following way. Let F be a reflexive Banach space and set E — Y © Y*. Define the linear symplectic form fiyby Qy[(^. y% (z>z*)] = z*(y) ~y*(z)- We define two symplectic spaces (£,, ß,) and (E2, ß2) to be equivalent if there is an isomorphism A : Ex -» E2 such that Q2(Ax, Ay) = ß,(x, y). A. Weinstein [10] has asked the question whether every symplectic Banach space is equivalent to one of the form (Y © Y*, üy).
    [Show full text]
  • Geometry in Tensor Products
    Universita` degli Studi di Napoli \Federico II" Facolt`adi Scienze Matematiche Fisiche e Naturali Dipartimento di Matematica e Applicazioni \R.Caccioppoli" Dottorato di Ricerca in Scienze Matematiche Daniele Puglisi Geometry in tensor products TESI DI DOTTORATO XIX CICLO 2003-2007 Tutors: Prof. Paolo De Lucia Coordinatore: Prof. Salvatore Rionero Prof. Joseph Diestel ii Acknowledgements First of all I would like to thank Prof. Joseph Diestel, from Kent State Uni- versity, for his precious suggestions and many many helps. To sit near Joe when he is talking about math in his office, in some bar or also inside some airport, is an experience every young mathematicians should have. I really want to thank him to invited me and for giving me a comfortable permanence in Kent (I have no words to thank you!). Then I thank my advisor Prof. Paolo De Lucia for accepting me as his stu- dent and for giving me the opportunity to visit the Kent State University. Thanks to Prof. Richard Aron for his excellent mathematical support, for helping me in many situation, and for any time that he took me to hear the Cleveland Orchestra. I also want to dedicate part of my dissertation to Roberto Lo Re, Giovanni Cutolo, and Chansung Choi, they influenced strongly my life. Thanks to Prof. Artem Zvavitch for his support, and thanks to Giuseppe Saluzzo, Assunta Tataranni for the many helps. I want to give thanks the secretary support to the Department of Mathemat- ical Sciences at at Kent State University and at Napoli. Specially, I wish to thank Virginia Wright, Misty Tackett, Luciana Colmayer and Luisa Falanga.
    [Show full text]
  • Algebras of Operators on Banach Spaces, and Homomorphisms Thereof
    Algebras of operators on Banach spaces, and homomorphisms thereof Bence Horváth Department of Mathematics and Statistics Lancaster University This dissertation is submitted for the degree of Doctor of Philosophy May 2019 „S en-sorsom legsötétebb, mert színe s alja poltron, Élet s mű között bolyong, mint aggály-aszú lélek: Életben mű riongat, a műben lét a sorsom — S a sír-írásom ez: se égimű, se földi élet.” — Szentkuthy Miklós Declaration The research presented in this thesis has not been submitted for a higher degree elsewhere and is, to the best of my knowledge and belief, original and my own work, except as acknowledged herein. • Chapter 2 contains joint work with Y. Choi and N. J. Laustsen [12]. • Chapter 3 contains work submitted for publication [34]. • Chapter 4 contains work accepted for publication [33]. Bence Horváth May 2019 Acknowledgements First and foremost I would like to thank my brilliant supervisors, Dr Yemon Choi and Dr Niels Jakob Laustsen for all their support throughout these three and a half years. Not only did they share their incredible knowledge and mathematical insight with me, but their continued encouragement, patience, and generosity with their time helped me to get much further in my mathematical career than I ever expected. Niels and Yemon; thank you for making my PhD studies such an amazing part of my life! I would like to thank Professor Gábor Elek for the many fun conversations (math- ematical or otherwise) and for his (futile) efforts to talk some sense into me about picking up an interest in more fashionable areas of mathematics.
    [Show full text]
  • Valued Functions Via Schauder Decompositions
    Received: 14 April 2019 Revised: 24 October 2019 Accepted: 13 December 2019 DOI: 10.1002/mana.201900172 ORIGINAL PAPER Series representations in spaces of vector-valued functions via Schauder decompositions Karsten Kruse Technische Universität Hamburg, Institut für Mathematik, Am Schwarzenberg- Abstract Campus 3, 21073 Hamburg, Germany It is a classical result that every ℂ-valued holomorphic function has a local power Correspondence series representation. This even remains true for holomorphic functions with val- Karsten Kruse, Technische Universität ues in a locally complete locally convex Hausdorff space over ℂ.Motivatedby Hamburg, Institut für Mathematik, Am this example we try to answer the following question. Let be a locally con- Schwarzenberg-Campus 3, 21073 Ham- (Ω) burg, Germany. vex Hausdorff space over a field ,let be a locally convex Hausdorff space Email: [email protected] of -valued functions on a set Ω and let (Ω, ) be an -valued counterpart of (Ω) (where the term -valued counterpart needs clarification itself). For which spaces is it possible to lift series representations of elements of (Ω) to elements of (Ω, )? We derive sufficient conditions for the answer to be affirmative using Schauder decompositions which are applicable for many classical spaces of func- tions (Ω) having an equicontinuous Schauder basis. KEYWORDS injective tensor product, Schauder basis, Schauder decomposition, series representation, vector-valued function MSC (2020) Primary: 46E40; Secondary: 46A32; 46E10 1 INTRODUCTION The purpose of this paper is to lift series representations known from scalar-valued functions to vector-valued functions and its underlying idea was derived from the classical example of the (local) power( ) series representation of a holomorphic function.
    [Show full text]
  • Self-Bilinear Map from One Way Encoding System and Indistinguishability Obfuscation
    Self-bilinear Map from One Way Encoding System and Indistinguishability Obfuscation Huang Zhang1,4, Fangguo Zhang1,4, Baodian Wei2,4, and Yusong Du3 1 School of Information Science and Technology, Sun Yat-sen University 2 School of Data and Computer Science, Sun Yat-sen University 3 School of Information Management, Sun Yat-sen University 4 Guangdong Key Laboratory of Information Security Technology Guangzhou 510006, China [email protected] Abstract. The bilinear map whose domain and target sets are identical is called the self-bilinear map. Original self-bilinear maps are defined over cyclic groups. This brings a lot of limitations to construct secure self-bilinear schemes. Since the map itself reveals information about the underlying cyclic group, hardness assumptions on DDHP and CDHP may not hold any more. In this paper, we used iO to construct a self-bilinear map from generic sets. These sets should own several properties. A new notion, One Way Encoding System (OWES), is proposed to describe formally the properties those sets should hold. An Encoding Division Problem is defined to complete the security proof. As an instance of the generic construction, we propose a concrete scheme built on the GGH graded encoding system and state that any 1-graded encoding system may satisfy the requirements of OWES. Finally, we discuss the hardness of EDP in the GGH graded encoding system. Keywords: self-bilinear map, multi-linear map, indistinguishability obfus- cation, one way encoding system. 1 Introduction The bilinear map is a very useful cryptographic primitive. It provides solutions for many cryptographic applications such as identity-based encryptions [2], non- interactive zero-knowledge proof systems [16], attribute-based encryptions [21] and short signatures [3, 23], etc.
    [Show full text]