Points in the Fppf Topology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sheaves and Homotopy Theory
SHEAVES AND HOMOTOPY THEORY DANIEL DUGGER The purpose of this note is to describe the homotopy-theoretic version of sheaf theory developed in the work of Thomason [14] and Jardine [7, 8, 9]; a few enhancements are provided here and there, but the bulk of the material should be credited to them. Their work is the foundation from which Morel and Voevodsky build their homotopy theory for schemes [12], and it is our hope that this exposition will be useful to those striving to understand that material. Our motivating examples will center on these applications to algebraic geometry. Some history: The machinery in question was invented by Thomason as the main tool in his proof of the Lichtenbaum-Quillen conjecture for Bott-periodic algebraic K-theory. He termed his constructions `hypercohomology spectra', and a detailed examination of their basic properties can be found in the first section of [14]. Jardine later showed how these ideas can be elegantly rephrased in terms of model categories (cf. [8], [9]). In this setting the hypercohomology construction is just a certain fibrant replacement functor. His papers convincingly demonstrate how many questions concerning algebraic K-theory or ´etale homotopy theory can be most naturally understood using the model category language. In this paper we set ourselves the specific task of developing some kind of homotopy theory for schemes. The hope is to demonstrate how Thomason's and Jardine's machinery can be built, step-by-step, so that it is precisely what is needed to solve the problems we encounter. The papers mentioned above all assume a familiarity with Grothendieck topologies and sheaf theory, and proceed to develop the homotopy-theoretic situation as a generalization of the classical case. -
Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0. -
Topos Theory
Topos Theory Olivia Caramello Sheaves on a site Grothendieck topologies Grothendieck toposes Basic properties of Grothendieck toposes Subobject lattices Topos Theory Balancedness The epi-mono factorization Lectures 7-14: Sheaves on a site The closure operation on subobjects Monomorphisms and epimorphisms Exponentials Olivia Caramello The subobject classifier Local operators For further reading Topos Theory Sieves Olivia Caramello In order to ‘categorify’ the notion of sheaf of a topological space, Sheaves on a site Grothendieck the first step is to introduce an abstract notion of covering (of an topologies Grothendieck object by a family of arrows to it) in a category. toposes Basic properties Definition of Grothendieck toposes Subobject lattices • Given a category C and an object c 2 Ob(C), a presieve P in Balancedness C on c is a collection of arrows in C with codomain c. The epi-mono factorization The closure • Given a category C and an object c 2 Ob(C), a sieve S in C operation on subobjects on c is a collection of arrows in C with codomain c such that Monomorphisms and epimorphisms Exponentials The subobject f 2 S ) f ◦ g 2 S classifier Local operators whenever this composition makes sense. For further reading • We say that a sieve S is generated by a presieve P on an object c if it is the smallest sieve containing it, that is if it is the collection of arrows to c which factor through an arrow in P. If S is a sieve on c and h : d ! c is any arrow to c, then h∗(S) := fg | cod(g) = d; h ◦ g 2 Sg is a sieve on d. -
Noncommutative Stacks
Noncommutative Stacks Introduction One of the purposes of this work is to introduce a noncommutative analogue of Artin’s and Deligne-Mumford algebraic stacks in the most natural and sufficiently general way. We start with quasi-coherent modules on fibered categories, then define stacks and prestacks. We define formally smooth, formally unramified, and formally ´etale cartesian functors. This provides us with enough tools to extend to stacks the glueing formalism we developed in [KR3] for presheaves and sheaves of sets. Quasi-coherent presheaves and sheaves on a fibered category. Quasi-coherent sheaves on geometric (i.e. locally ringed topological) spaces were in- troduced in fifties. The notion of quasi-coherent modules was extended in an obvious way to ringed sites and toposes at the moment the latter appeared (in SGA), but it was not used much in this generality. Recently, the subject was revisited by D. Orlov in his work on quasi-coherent sheaves in commutative an noncommutative geometry [Or] and by G. Laumon an L. Moret-Bailly in their book on algebraic stacks [LM-B]. Slightly generalizing [R4], we associate with any functor F (regarded as a category over a category) the category of ’quasi-coherent presheaves’ on F (otherwise called ’quasi- coherent presheaves of modules’ or simply ’quasi-coherent modules’) and study some basic properties of this correspondence in the case when the functor defines a fibered category. Imitating [Gir], we define the quasi-topology of 1-descent (or simply ’descent’) and the quasi-topology of 2-descent (or ’effective descent’) on the base of a fibered category (i.e. -
Arxiv:2008.10677V3 [Math.CT] 9 Jul 2021 Space Ha Hoyepiil Ea Ihtewr Fj Ea N194 in Leray J
On sheaf cohomology and natural expansions ∗ Ana Luiza Tenório, IME-USP, [email protected] Hugo Luiz Mariano, IME-USP, [email protected] July 12, 2021 Abstract In this survey paper, we present Čech and sheaf cohomologies – themes that were presented by Koszul in University of São Paulo ([42]) during his visit in the late 1950s – we present expansions for categories of generalized sheaves (i.e, Grothendieck toposes), with examples of applications in other cohomology theories and other areas of mathematics, besides providing motivations and historical notes. We conclude explaining the difficulties in establishing a cohomology theory for elementary toposes, presenting alternative approaches by considering constructions over quantales, that provide structures similar to sheaves, and indicating researches related to logic: constructive (intuitionistic and linear) logic for toposes, sheaves over quantales, and homological algebra. 1 Introduction Sheaf Theory explicitly began with the work of J. Leray in 1945 [46]. The nomenclature “sheaf” over a space X, in terms of closed subsets of a topological space X, first appeared in 1946, also in one of Leray’s works, according to [21]. He was interested in solving partial differential equations and build up a strong tool to pass local properties to global ones. Currently, the definition of a sheaf over X is given by a “coherent family” of structures indexed on the lattice of open subsets of X or as étale maps (= local homeomorphisms) into X. Both arXiv:2008.10677v3 [math.CT] 9 Jul 2021 formulations emerged in the late 1940s and early 1950s in Cartan’s seminars and, in modern terms, they are intimately related by an equivalence of categories. -
A Grothendieck Site Is a Small Category C Equipped with a Grothendieck Topology T
Contents 5 Grothendieck topologies 1 6 Exactness properties 10 7 Geometric morphisms 17 8 Points and Boolean localization 22 5 Grothendieck topologies A Grothendieck site is a small category C equipped with a Grothendieck topology T . A Grothendieck topology T consists of a collec- tion of subfunctors R ⊂ hom( ;U); U 2 C ; called covering sieves, such that the following hold: 1) (base change) If R ⊂ hom( ;U) is covering and f : V ! U is a morphism of C , then f −1(R) = fg : W ! V j f · g 2 Rg is covering for V. 2) (local character) Suppose R;R0 ⊂ hom( ;U) and R is covering. If f −1(R0) is covering for all f : V ! U in R, then R0 is covering. 3) hom( ;U) is covering for all U 2 C . 1 Typically, Grothendieck topologies arise from cov- ering families in sites C having pullbacks. Cover- ing families are sets of maps which generate cov- ering sieves. Suppose that C has pullbacks. A topology T on C consists of families of sets of morphisms ffa : Ua ! Ug; U 2 C ; called covering families, such that 1) Suppose fa : Ua ! U is a covering family and y : V ! U is a morphism of C . Then the set of all V ×U Ua ! V is a covering family for V. 2) Suppose ffa : Ua ! Vg is covering, and fga;b : Wa;b ! Uag is covering for all a. Then the set of composites ga;b fa Wa;b −−! Ua −! U is covering. 3) The singleton set f1 : U ! Ug is covering for each U 2 C . -
Direct Systems and Direct Limit Groups Informal Guided Reading Supervised by Dr Moty Katzman
Direct Systems and Direct Limit Groups Informal guided reading supervised by Dr Moty Katzman Jai Adam Schrem Based on Chapter 1 from Derek J.S. Robinson's \A Course in the Theory of Groups" 23rd September 2020 Jai Adam Schrem Direct Systems and Direct Limit Groups Notation and Definitions Let Λ be a set, with λ, µ, ν 2 Λ. Definition: Equivalence Relation An equivalence relation is a binary relation between elements of a set Λ that is Reflexive: λ = λ Symmetric: If λ = µ, then µ = λ Transitive: If λ = µ and µ = ν, then λ = ν for any λ, µ, ν 2 Λ. Definition: Equivalence Classes We can partition the set Λ into subsets of elements that are equivalent to one another. These subsets are called equivalence classes. Write [λ] for the equivalence class of element λ 2 Λ. Jai Adam Schrem Direct Systems and Direct Limit Groups Notation and Definitions Definition: Directed Set Equip set Λ with reflexive and transitive binary relation `≤' that `compares' elements pairwise. If the upper bound property 8λ, µ 2 Λ, 9ν 2 Λ such that λ ≤ ν and µ ≤ ν is satisfied, we say the set Λ with binary relation `≤' is directed. Example: N directed by divisibility Equip N with the binary relation of divisibility, notated by `j'. Letting a; b; c 2 N, we can easily see Reflexivity: Clearly aja Transitivity: If ajb and bjc then ajc Upper bound property: For any a; b 2 N we can compute the lowest common multiple, say m, so that ajm and bjm. Jai Adam Schrem Direct Systems and Direct Limit Groups Direct System of Groups Let Λ with binary relation ≤ be a directed set, with λ, µ, ν 2 Λ. -
On Colimits in Various Categories of Manifolds
ON COLIMITS IN VARIOUS CATEGORIES OF MANIFOLDS DAVID WHITE 1. Introduction Homotopy theorists have traditionally studied topological spaces and used methods which rely heavily on computation, construction, and induction. Proofs often go by constructing some horrendously complicated object (usually via a tower of increasingly complicated objects) and then proving inductively that we can understand what’s going on at each step and that in the limit these steps do what is required. For this reason, a homotopy theorist need the freedom to make any construction he wishes, e.g. products, subobjects, quotients, gluing towers of spaces together, dividing out by group actions, moving to fixed points of group actions, etc. Over the past 50 years tools have been developed which allow the study of many different categories. The key tool for this is the notion of a model category, which is the most general place one can do homotopy theory. Model categories were introduced by the Fields Medalist Dan Quillen, and the best known reference for model categories is the book Model Categories by Mark Hovey. Model categories are defined by a list of axioms which are all analogous to properties that the category Top of topological spaces satisfies. The most important property of a model category is that it has three distinguished classes of morphisms–called weak equivalences, cofibrations, and fibrations–which follow rules similar to the classes of maps with those names in the category Top (so the homotopy theory comes into play by inverting the weak equivalences to make them isomorphisms). The fact that homotopy theorists need to be able to do lots of constructions is contained in the axiom that M must be complete and cocomplete. -
Notes on Topos Theory
Notes on topos theory Jon Sterling Carnegie Mellon University In the subjectivization of mathematical objects, the activity of a scientist centers on the articial delineation of their characteristics into denitions and theorems. De- pending on the ends, dierent delineations will be preferred; in these notes, we prefer to work with concise and memorable denitions constituted from a common body of semantically rich building blocks, and treat alternative characterizations as theorems. Other texts To learn toposes and sheaves thoroughly, the reader is directed to study Mac Lane and Moerdijk’s excellent and readable Sheaves in Geometry and Logic [8]; also recommended as a reference is the Stacks Project [13]. ese notes serve only as a supplement to the existing material. Acknowledgments I am grateful to Jonas Frey, Pieter Hofstra, Ulrik Buchholtz, Bas Spiers and many others for explaining aspects of category theory and topos theory to me, and for puing up with my ignorance. All the errors in these notes are mine alone. 1 Toposes for concepts in motion Do mathematical concepts vary over time and space? is question is the fulcrum on which the contradictions between the competing ideologies of mathematics rest. Let us review their answers: Platonism No. Constructivism Maybe. Intuitionism Necessarily, but space is just an abstraction of time. Vulgar constructivism No.1 Brouwer’s radical intuitionism was the rst conceptualization of mathematical activity which took a positive position on this question; the incompatibility of intuition- ism with classical mathematics amounts essentially to the fact that they take opposite positions as to the existence of mathematical objects varying over time. -
Right Exact Functors
Journal ofPure and Applied Algebra 4 (I 974) 1 —8. © North-Holland Publishing Company RIGHT EXACT FUNCTORS Michael BARR Department ofMathematics, McGill University, Montreal, Canada Communicated by R]. Hilton Received 20 January 1973 Revised 30 May 1973 0. Introduction Let X be a category with finite limits. We say that X is exact if: (1) whenever X1_’g X2 lfl X3_" X4 is a pullback diagram and f is a regular epimorphism (the coequalizer of some pair of maps), so is g; (2) wheneverE C X X X is an equivalence relation (see Section 1 below), then the two projection mapsE 3 X have a coequalizer; moreover, E is its kernel pair. When X lacks all finite limits, a somewhat finer definition can be given. We refer to [3, I(1.3)] for details. In this note, we explore some of the properties of right exact functors — those which preserve the coequalizers of equivalence relations. For functors which pre- serve kernel pairs, this is equivalent (provided that the domain is an exact category) to preserving regular epimorphisms. I had previously tried — in vain — to show that functors which preserve regular epirnorphisms have some of the nice properties which right exact functors do have. For example, what do you need to assume about a triple on an exact category to insure that the category of algebras is exact? The example of the torsion-free-quotient triple on abelian groups shows that pre- serving regular epimorphisms is not enough. On the other hand, as I showed in [3, 1.5.11], the algebras for a finitary theory in any exact category do form an exact category. -
Journal of Pure and Applied Algebra Structure Sheaves of Definable
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 214 (2010) 1370–1383 Contents lists available at ScienceDirect Journal of Pure and Applied Algebra journal homepage: www.elsevier.com/locate/jpaa Structure sheaves of definable additive categories Mike Prest ∗, Ravi Rajani School of Mathematics, Alan Turing Building, University of Manchester, Manchester M13 9PL, UK article info a b s t r a c t Article history: We prove that the 2-category of small abelian categories with exact functors is anti- Received 12 March 2008 equivalent to the 2-category of definable additive categories. We define and compare Received in revised form 5 October 2009 sheaves of localisations associated to the objects of these categories. We investigate the Available online 8 December 2009 natural image of the free abelian category over a ring in the module category over that ring Communicated by P. Balmer and use this to describe a basis for the Ziegler topology on injectives; the last can be viewed model-theoretically as an elimination of imaginaries result. MSC: ' 2009 Elsevier B.V. All rights reserved. Primary: 16D90; 18E10; 18E15; 18F20 Secondary: 03C60; 16D50; 18E35 1. Introduction A full subcategory of the category of modules over a ring is said to be definable if it is closed under direct products, direct limits and pure submodules. More generally we make the same definition for subcategories of Mod-R, the category of additive contravariant functors from a skeletally small preadditive category R to the category Ab of abelian groups. -
Basic Categorial Constructions 1. Categories and Functors
(November 9, 2010) Basic categorial constructions Paul Garrett [email protected] http:=/www.math.umn.edu/~garrett/ 1. Categories and functors 2. Standard (boring) examples 3. Initial and final objects 4. Categories of diagrams: products and coproducts 5. Example: sets 6. Example: topological spaces 7. Example: products of groups 8. Example: coproducts of abelian groups 9. Example: vectorspaces and duality 10. Limits 11. Colimits 12. Example: nested intersections of sets 13. Example: ascending unions of sets 14. Cofinal sublimits Characterization of an object by mapping properties makes proof of uniqueness nearly automatic, by standard devices from elementary category theory. In many situations this means that the appearance of choice in construction of the object is an illusion. Further, in some cases a mapping-property characterization is surprisingly elementary and simple by comparison to description by construction. Often, an item is already uniquely determined by a subset of its desired properties. Often, mapping-theoretic descriptions determine further properties an object must have, without explicit details of its construction. Indeed, the common impulse to overtly construct the desired object is an over- reaction, as one may not need details of its internal structure, but only its interactions with other objects. The issue of existence is generally more serious, and only addressed here by means of example constructions, rather than by general constructions. Standard concrete examples are considered: sets, abelian groups, topological spaces, vector spaces. The real reward for developing this viewpoint comes in consideration of more complicated matters, for which the present discussion is preparation. 1. Categories and functors A category is a batch of things, called the objects in the category, and maps between them, called morphisms.