Shrikhande, “Euler's Spoiler”

Total Page:16

File Type:pdf, Size:1020Kb

Shrikhande, “Euler's Spoiler” Asia Pacific Mathematics Newsletter Shrikhande, “Euler’s Spoiler”, Turns 100 Nithyanand Rao Portrait by Mohan R (Courtesy of The Shrikhande Family) elatives, well-wishers and dignitaries kept ensured his name would be associated with Euler, one arriving to greet Professor Shrikhande. Seated of the greatest mathematicians in history. It was 58 years on the lawns, he would adjust his hearing aid— ago that Shrikhande, along with his mentor R.C. Bose Rtrying to hear over the firecrackers in the background— and their collaborator E.T. Parker, proved Euler wrong thank them and smile, and now and then burst into a and made the headlines. hearty chuckle, trying not to look in the direction of the intense light drenching the table. Late in his life, the legendary Swiss mathematician Sharadchandra Shankar Shrikhande, celebrating his Leonhard Euler (1707–1783) began a long paper [1] 100th birthday on 19 October 2017, wasn’t too keen to pondering a puzzle he couldn’t find an answer to. remain in the spotlight. The bright light on the pole Although he was almost completely blind by then, his was turned away, but visitors kept coming to greet him already prodigious productivity had increased, and seek his blessings, some aware of his great distractions having been reduced. He had always made mathematical achievements—in particular, the one that the most of his phenomenal memory and ability to December 2018, Volume 8 No 1 15 Asia Pacific Mathematics Newsletter calculate in his head and, after his loss of vision, he used a scribe to record his discoveries. The puzzle he was considering was this: Imagine that there are 36 officers belonging to six different military regiments, each regiment having six officers of different ranks. How does one arrange them in the form of a square such that each row and column has six officers, and no rank or regiment appears more than once in a row or column? How does one satisfy both the requirements— neither rank nor regiment repeated in a row or column? If we combine, or superpose, the two squares, we get another square as below, where the numbers are now coloured. In the square above, both requirements are satisfied. Euler (Emanuel Handmann via Wikimedia Commons) And there is only one red 1 and only one green 2; only once does each such combination of rank and regiment Mathematicians, professional or otherwise, like to appear in the square. Two such superposed Latin ponder such puzzles for recreation, and not a few squares, therefore, are called orthogonal to each other. mathematical gems have emerged from such playing Orthogonal Latin squares were, in fact, around around. In many such puzzles, a simplification helps much longer before Euler. Amulets bearing Latin clarify the picture. Consider nine officers instead of 36, squares were known in medieval Islam, circa 1200 [2]. belonging to three different regiments, each regiment Choi Seok-Jeong (1646–1715), a Korean government having one officer of each of the three ranks. The official and mathematician, used orthogonal Latin problem, as before, is to arrange them in a square such squares of order 9 to construct magic squares—one in that no rank or regiment is repeated in a row or column. which the entries in any of the rows or columns or This is actually two problems in one. One can arrange diagonals add up to the same number. (Euler himself the nine officers such that no regiment—labelled 1, 2 was interested in magic squares.) or 3 below—is repeated in a row or column. Such an The pair of Latin squares in the above example is of arrangement is called a Latin square (since Euler order n = 3. Euler observed that a similar exercise can originally used Latin letters instead of numbers). be done for orders 4 and 5, and also whenever n is an odd number or is divisible by four. Now, the 36 officers problem, in the language of Latin squares, is to find a pair of orthogonal Latin squares of order 6. But Euler found himself unable to do it for n = 6. He couldn’t find an arrangement to solve the puzzle, and concluded that one didn’t exist at all (although his proof wasn’t fully correct). He went on to conjecture that no solutions existed for a number that, like six, left a remainder of two when divided by four. These are numbers such as One can also arrange the officers such that no 10,14,18, 22, and so on, which are called “oddly even” rank—red, green or blue below—is repeated in a row numbers. (There are no orthogonal Latin squares of or column to get another Latin square. order 2 as well.) 16 December 2018, Volume 8 No 1 Asia Pacific Mathematics Newsletter This conjecture by Euler was made in 1782. In 1901, that, Shrikhande’s father, who worked at a flour mill, a French mathematician named Gaston Tarry (1843– was determined to educate his children. Shrikhande 1913) proved that n = 6 was indeed impossible by did well academically and won scholarships that helped laboriously checking all possible cases. But Euler’s him complete his BSc Honours at the Government conjecture that orthogonality was impossible for all College of Science (now known as the Institute of oddly even numbers remained to be resolved. Until Science) in Nagpur with a first rank and a gold medal. 1959, when R.C. Bose, Shrikhande and E.T. Parker “At this point of time,” he wrote in an autobiographical disproved the conjecture. essay [6], “I was badly in need of a gainful employment, which however was not available.” Unable to find a job, he instead made his way, in January 1940, to Kolkata where financial assistance was available for him to join the Indian Statistical Institute (ISI). Founded by P.C. Mahalanobis (1893–1972), ISI at that time “was located in four of five rooms in the Presidency College” where Mahalanobis was a professor of physics. But those rooms housed a hotbed of young talent in statistics many of whom would go on to make major contributions. One of them was Raj Chandra Bose (1901–1987), whom Shrikhande describes as “the major architect of my research involvement in combinatorics”, the field of mathematics that studies how to combine different things, whether certain combinations are possible at (Courtesy of The Shrikhande Family) all, and what combination is most appropriate given certain constraints. “The suddenness with which complete success After a year at ISI, Shrikhande had a short-lived came,” Bose recalled later [3], “in a problem which had appointment at the college in Jabalpur where he had baffled mathematicians for over one and three-quarters done his intermediate studies (the equivalent of two centuries startled the authors as much as anyone else. years after Class 10 today) and then joined as a lecturer What makes this even more surprising is that the in mathematics at the Government College of Science concepts employed were not even close to the frontiers in Nagpur. But he kept making trips to Calcutta in the of deep modern mathematics.” early 1940s to work with Bose, who introduced him to The result was announced in the annual meeting of the theory of statistical design of experiments, a field the American Mathematical Society held in New York where Latin squares proved to be more than amusement. in April 1959. “Bose, Ernie (Parker) and I,” Shrikhande In the 1920s, R.A. Fisher (1890–1962), the pioneering said later [4], “had the rare privilege of seeing our works British statistician and biologist, had applied them to reported on the front page of the Sunday Edition of the the design of field experiments in agriculture. His ideas New York Times of April 26, 1959.” were later developed by Bose. The three of them, noted theNYT report [5], “are Suppose one wishes to test the effects of three now known among their colleagues as ‘Euler’s spoilers’”. different agricultural fertilizers on the growth of a crop. Now, it is likely that the fertility of soil in different patches of a large plot of land varies naturally, perhaps hrikhande and Bose were, at the time, at the because the amount of moisture in the soil varies. How SUniversity of North Carolina, Chapel Hill, in the does one test how good the fertilizers are while Department of Mathematical Statistics, which had been accounting for this natural variation in fertility of the founded in 1946 by the statistician Harold Hotelling soil? Fisher’s solution to this problem was to divide the (1895–1973). Bose had been a faculty there since 1949, field into cells of a three-by-three square and apply the and Shrikhande, who had joined for a PhD in 1947, three fertilizers in the pattern of a Latin square of order had been Bose’s first PhD student. But his path hadn’t 3 (such as the one shown previously). Because of this been straightforward. Born on 19 October 1917, the pattern, one can use statistical analysis to eliminate the fifth of ten siblings, in Sagar, now in Madhya Pradesh, bias due to variation in natural soil fertility along a row his family faced severe financial difficulties. Despite or column of the field. December 2018, Volume 8 No 1 17 Asia Pacific Mathematics Newsletter Now, if instead of one variety of crop, what if we of mutually orthogonal Latin squares in such a case, a had three? The solution to accommodate this variable result that, unknown to him, had been discovered is to use a Latin square of order 3 orthogonal to the earlier in 1896 by E.H.
Recommended publications
  • Academic Genealogy of the Oakland University Department Of
    Basilios Bessarion Mystras 1436 Guarino da Verona Johannes Argyropoulos 1408 Università di Padova 1444 Academic Genealogy of the Oakland University Vittorino da Feltre Marsilio Ficino Cristoforo Landino Università di Padova 1416 Università di Firenze 1462 Theodoros Gazes Ognibene (Omnibonus Leonicenus) Bonisoli da Lonigo Angelo Poliziano Florens Florentius Radwyn Radewyns Geert Gerardus Magnus Groote Università di Mantova 1433 Università di Mantova Università di Firenze 1477 Constantinople 1433 DepartmentThe Mathematics Genealogy Project of is a serviceMathematics of North Dakota State University and and the American Statistics Mathematical Society. Demetrios Chalcocondyles http://www.mathgenealogy.org/ Heinrich von Langenstein Gaetano da Thiene Sigismondo Polcastro Leo Outers Moses Perez Scipione Fortiguerra Rudolf Agricola Thomas von Kempen à Kempis Jacob ben Jehiel Loans Accademia Romana 1452 Université de Paris 1363, 1375 Université Catholique de Louvain 1485 Università di Firenze 1493 Università degli Studi di Ferrara 1478 Mystras 1452 Jan Standonck Johann (Johannes Kapnion) Reuchlin Johannes von Gmunden Nicoletto Vernia Pietro Roccabonella Pelope Maarten (Martinus Dorpius) van Dorp Jean Tagault François Dubois Janus Lascaris Girolamo (Hieronymus Aleander) Aleandro Matthaeus Adrianus Alexander Hegius Johannes Stöffler Collège Sainte-Barbe 1474 Universität Basel 1477 Universität Wien 1406 Università di Padova Università di Padova Université Catholique de Louvain 1504, 1515 Université de Paris 1516 Università di Padova 1472 Università
    [Show full text]
  • Graeco-Latin Squares and a Mistaken Conjecture of Euler Author(S): Dominic Klyve and Lee Stemkoski Source: the College Mathematics Journal, Vol
    Graeco-Latin Squares and a Mistaken Conjecture of Euler Author(s): Dominic Klyve and Lee Stemkoski Source: The College Mathematics Journal, Vol. 37, No. 1 (Jan., 2006), pp. 2-15 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/27646265 . Accessed: 15/10/2013 14:08 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The College Mathematics Journal. http://www.jstor.org This content downloaded from 128.195.64.2 on Tue, 15 Oct 2013 14:08:26 PM All use subject to JSTOR Terms and Conditions Graeco-Latin Squares and a Mistaken Conjecture of Euler Dominic Klyve and Lee Stemkoski Dominic Klyve ([email protected]) and Lee Stemkoski ([email protected]) are both Ph.D. students inmathematics at Dartmouth College (Hanover, NH 03755). While their main area of study is number theory (computational and analytic, respectively), their primary avocation is the history of mathematics, in particular the contributions of Leonhard Euler. They are the creators and co-directors of the Euler Archive (http://www.eulerarchive.org), an online resource which is republishing the works of Euler in their original formats.
    [Show full text]
  • 2018 Joint Meetings of the Florida Section of the Mathematical Association of America and the Florida Two-Year College Mathematics Association
    2018 Joint Meetings Of The Florida Section Of The Mathematical Association of America And The Florida Two-Year College Mathematics Association Florida Atlantic University Davie Campus February 9 - 10, 2018 Florida Section of the Mathematical Association of America 2017 – 2018 Section Representative Pam Crawford, Jacksonville University President Brian Camp, Saint Leo University Past President John R. Waters Jr., State College of Florida Vice-President for Programs Charles Lindsey, Florida Gulf Coast University Vice-President for Site Selection Anthony Okafor, University of West Florida Secretary-Treasurer David Kerr, Eckerd College Newsletter Editor Daniela Genova, University of North Florida Coordinator of Student Activities Donald Ransford, Florida SouthWestern State College Webmaster Altay Özgener, State College of Florida President-elect Penny Morris, Polk State College VP for Programs-elect Milé Krajčevski, University of South Florida VP for Site Selection-elect Joy D’Andrea, USF Sarasota-Manatee Florida Two-Year College Mathematics Association 2017-2018 President Altay Özgener, State College of Florida Past President Ryan Kasha, Valencia College Vice-President for Programs Don Ransford, Florida SouthWestern State College Secretary Sidra Van De Car, Valencia College Treasurer Ryan Kasha, Valencia College Newsletter Editor Rebecca Williams, State College of Florida Membership Chair Dennis Runde, State College of Florida Historian Joni Pirnot, State College of Florida Webmaster Altay Özgener, State College of Florida President-elect Sandra Seifert, Florida SouthWestern State College 2 PROGRAM Friday, February 9, 2018 Committee Meetings and Workshops FL – MAA 9:30 – 11:00 Executive Committee Meeting LA 150 FTYCMA 9:30 – 10:30 FTYCMA Officer’s Meeting LA 132 10:30 – 12:00 FTYCMA Annual Business Meeting LA 132 12:00 – 1:30 New Members Luncheon and Mingle Student Union (BC54) Free lunch for first time attendees.
    [Show full text]
  • "Read Euler, Read Euler, He Is the Master of Us All."
    "Read Euler, read Euler, he is the master of us all." © 1997−2009, Millennium Mathematics Project, University of Cambridge. Permission is granted to print and copy this page on paper for non−commercial use. For other uses, including electronic redistribution, please contact us. March 2007 Features "Read Euler, read Euler, he is the master of us all." by Robin Wilson Leonhard Euler was the most prolific mathematician of all time. He wrote more than 500 books and papers during his lifetime about 800 pages per year with an incredible 400 further publications appearing posthumously. His collected works and correspondence are still not completely published: they already fill over seventy large volumes, comprising tens of thousands of pages. Euler worked in an astonishing variety of areas, ranging from the very pure the theory of numbers, the geometry of a circle and musical harmony via such areas as infinite series, logarithms, the calculus and mechanics, to the practical optics, astronomy, the motion of the Moon, the sailing of ships, and much else besides. Indeed, Euler originated so many ideas that his successors have been kept busy trying to follow them up ever since; indeed, to Pierre−Simon Laplace, the French applied mathematician, is attributed the exhortation in the title of this article. "Read Euler, read Euler, he is the master of us all." 1 "Read Euler, read Euler, he is the master of us all." Leonhard Euler 1707 − 1783. He would have turned 300 this year. Not surprisingly, many concepts are named after him: Euler's constant, Euler's polyhedron formula, the Euler line of a triangle, Euler's equations of motion, Eulerian graphs, Euler's pentagonal formula for partitions, and many others.
    [Show full text]
  • Carver Award: Lynne Billard We Are Pleased to Announce That the IMS Carver Medal Committee Has Selected Lynne CONTENTS Billard to Receive the 2020 Carver Award
    Volume 49 • Issue 4 IMS Bulletin June/July 2020 Carver Award: Lynne Billard We are pleased to announce that the IMS Carver Medal Committee has selected Lynne CONTENTS Billard to receive the 2020 Carver Award. Lynne was chosen for her outstanding service 1 Carver Award: Lynne Billard to IMS on a number of key committees, including publications, nominations, and fellows; for her extraordinary leadership as Program Secretary (1987–90), culminating 2 Members’ news: Gérard Ben Arous, Yoav Benjamini, Ofer in the forging of a partnership with the Bernoulli Society that includes co-hosting the Zeitouni, Sallie Ann Keller, biannual World Statistical Congress; and for her advocacy of the inclusion of women Dennis Lin, Tom Liggett, and young researchers on the scientific programs of IMS-sponsored meetings.” Kavita Ramanan, Ruth Williams, Lynne Billard is University Professor in the Department of Statistics at the Thomas Lee, Kathryn Roeder, University of Georgia, Athens, USA. Jiming Jiang, Adrian Smith Lynne Billard was born in 3 Nominate for International Toowoomba, Australia. She earned both Prize in Statistics her BSc (1966) and PhD (1969) from the 4 Recent papers: AIHP, University of New South Wales, Australia. Observational Studies She is probably best known for her ground-breaking research in the areas of 5 News from Statistical Science HIV/AIDS and Symbolic Data Analysis. 6 Radu’s Rides: A Lesson in Her research interests include epidemic Humility theory, stochastic processes, sequential 7 Who’s working on COVID-19? analysis, time series analysis and symbolic 9 Nominate an IMS Special data. She has written extensively in all Lecturer for 2022/2023 these areas, publishing over 250 papers in Lynne Billard leading international journals, plus eight 10 Obituaries: Richard (Dick) Dudley, S.S.
    [Show full text]
  • Iam Delighted to Present the Annual Report Of
    From the Director’s Desk am delighted to present the Annual Report of the &Communications were planned. One may recall that Indian Statistical Institute for the year 2018-19. This on June 29, 2017, the then Hon’ble President of India, I Institute that started its journey in December 1931 in Shri Pranab Mukherjee, had inaugurated the 125th Birth Kolkata has today grown into a unique institution of higher Anniversary Celebrations of Mahalanobis. learning spread over several cities of India. The Institute, founded by the visionary PC Mahalanobis, continues It is always a delight to inform that once again the its glorious tradition of disseminating knowledge in Institute faculty members have been recognized both Statistics, Mathematics, Computer Science, Quantitative nationally and internationally with a large number of Economics and related subjects. The year 2018-19 saw honors and awards. I mention some of these here. In the formation of the new Council of the Institute. I am 2018, Arunava Sen was conferred the TWAS-Siwei Cheng delighted to welcome Shri Bibek Debroy as the President Prize in Economics and Sanghamitra Bandyopadhyay of the Institute. It is also a privilege that Professor was conferred the TWAS Prize Engineering Sciences in Goverdhan Mehta continues to guide the Institute as the Trieste, Italy. Arup Bose was selected as J.C. Bose Fellow Chairman of the Council. for 2019-2023 after having completed one term of this fellowship from 2014 to 2018. Nikhil Ranjan Pal was The Institute conducted its 53rd Convocation in January appointed President, IEEE Computational Intelligence 2019. The Institute was happy to have Lord Meghnad Society.
    [Show full text]
  • An Introduction to SDR's and Latin Squares
    Morehead Electronic Journal of Applicable Mathematics Issue 4 — MATH-2005-03 Copyright c 2005 An introduction to SDR’s and Latin squares1 Jordan Bell2 School of Mathematics and Statistics Carleton University, Ottawa, Ontario, Canada Abstract In this paper we study systems of distinct representatives (SDR’s) and Latin squares, considering SDR’s especially in their application to constructing Latin squares. We give proofs of several important elemen- tary results for SDR’s and Latin squares, in particular Hall’s marriage theorem and lower bounds for the number of Latin squares of each order, and state several other results, such as necessary and sufficient conditions for having a common SDR for two families. We consider some of the ap- plications of Latin squares both in pure mathematics, for instance as the multiplication table for quasigroups, and in applications, such as analyz- ing crops for differences in fertility and susceptibility to insect attack. We also present a brief history of the study of Latin squares and SDR’s. 1 Introduction and history We first give a definition of Latin squares: Definition 1. A Latin square is a n × n array with n distinct entries such that each entry appears exactly once in each row and column. Clearly at least one Latin square exists of all orders n ≥ 1, as it could be made trivially with cyclic permutations of (1, . , n). This is called a circulant matrix of (1, . , n), seen in Figure 1. We discuss nontrivial methods for generating more Latin squares in Section 3. Euler studied Latin squares in his “36 officers problem” in [7], which had six ranks of officers from six different regiments, and which asked whether it is possible that no row or column duplicate a rank or a regiment; Euler was unable to produce such a square and conjectured that it is impossible for n = 4k + 2, and indeed the original case k = 1 of this claim was proved by G.
    [Show full text]
  • The Problem of the 36 Officers Kalei Titcomb
    The Problem of the 36 Officers Kalei Titcomb June 12, 2009 Contents 1 Latin Squares 5 2 Orthogonal Latin Squares 6 3 Designs 7 3.1 Transversal Designs (TDs) . 7 3.2 Pairwise balanced Designs (PBDs) . 8 4 The incidence matrix M of a PBD 9 4.1 Incidence matrix for 4 × 4 case . 11 4.2 Incidence matrix M for the 6 × 6 case (assuming such a case exists) . 12 5 The code C of P and Lemma I 13 6 Even sub-PBD and Lemma II 14 7 The mysterious case of m = 8 and Lemma III 16 7.1 The new incidence matrix: Mb ............................. 18 7.2 A graph named G ................................... 19 8 Property A and Lemma IV 21 9 The last hope and Lemma V 28 10 Curriculum Activity I 29 10.1 Latin Squares . 29 10.2 Latin Squares–key . 31 10.3 Reflecting on Activity I . 32 11 Curriculum Activity II 33 11.1 Orthogonal Latin Squares . 33 11.2 Orthogonal Latin Squares–key . 34 11.3 Reflecting on Activity II . 35 12 Curriculum Activity III 36 12.1 Magic Squares . 36 12.2 Magic Squares–key . 37 12.3 Reflecting on Activity III . 39 1 13 Curriculum Activity IV 40 13.1 Forming magic squares . 40 13.2 Finding Magic squares–key . 42 13.3 Reflecting on Activity IV . 44 2 Introduction to the Mathematical Exploration Ever since I was a little kid, I have enjoyed doing puzzles. While my parents bought the crossword puzzle books, I always wanted the logic books because they had games, and a variety of puzzles including crossword.
    [Show full text]
  • Professor Stewart's Casebook of Mathematical Mysteries
    Professor Stewart’s Casebook of Mathematical Mysteries Professor Ian Stewart is known throughout the world for making mathematics popular. He received the Royal Society’s Faraday Medal for furthering the public understanding of science in1995, the IMA Gold Medal in 2000, the AAAS Public Understanding of Science and Technology Award in 2001 and the LMS/IMA Zeeman Medal in 2008. He was elected a Fellow of the Royal Society in 2001. He is Emeritus Professor of Mathematics at the University of Warwick, where he divides his time between research into nonlinear dynamics and furthering public awareness of mathematics. His many popular science books include (with Terry Pratchett and Jack Cohen) The Science of Discworld I to IV, The Mathematics of Life, 17 Equations that Changed the World and The Great Mathematical Problems. His app, Professor Stewart’s Incredible Numbers, was published jointly by Profile and Touch Press in March 2014. By the Same Author Concepts Of Modern Mathematics Game, Set, And Math Does God Play Dice? Another Fine Math You’ve Got Me Into Fearful Symmetry Nature’s Numbers From Here To Infinity The Magical Maze Life’s Other Secret Flatterland What Shape Is A Snowflake? The Annotated Flatland Math Hysteria The Mayor Of Uglyville’s Dilemma How To Cut A Cake Letters To A Young Mathematician Taming The Infinite (Alternative Title: The Story Of Mathematics) Why Beauty Is Truth Cows In The Maze Mathematics Of Life Professor Stewart’s Cabinet Of Mathematical Curiosities Professor Stewart’s Hoard Of Mathematical Treasures Seventeen
    [Show full text]
  • Coloring Cayley Tables of Finite Groups
    Coloring Cayley Tables of Finite Groups by Kevin C. Halasz B.Sc., University of Puget Sound, 2014 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mathematics Faculty of Science c Kevin C. Halasz 2017 SIMON FRASER UNIVERSITY Summer 2017 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Kevin C. Halasz Degree: Master of Science (Mathematics) Title: Coloring Cayley Tables of Finite Groups Examining Committee: Chair: Ralf Wittenberg Associate Professor Luis Goddyn Senior Supervisor Professor Matt DeVos Supervisor Associate Professor Ladislav Stacho Internal Examiner Associate Professor Date Defended: August 8, 2017 ii Abstract The chromatic number of a latin square L, denoted χ(L), is defined as the minimum number of partial transversals needed to cover all of its cells. It has been conjectured that every latin square L satisfies χ(L) ≤ |L| + 2. If true, this would resolve a longstanding conjecture, commonly attributed to Brualdi, that every latin square has a partial transversal of length |L|−1. Restricting our attention to Cayley tables of finite groups, we prove two results. First, we constructively show that all finite Abelian groups G have Cayley tables with chromatic number |G| + 2. Second, we give an upper bound for the chromatic number of Cayley tables of arbitrary finite groups. For |G| ≥ 3, this improves the best-known general upper bound 3 from 2|G| to 2 |G|, while yielding an even stronger result in infinitely many cases.
    [Show full text]
  • Graeco-Latin Squares and a Mistaken Conjecture of Euler∗
    Graeco-Latin Squares and a Mistaken Conjecture of Euler∗ Dominic Klyve Lee Stemkoski Introduction Late in his long and productive career, Leonhard Euler published a hundred-page paper detailing the properties of a new mathematical structure: Graeco-Latin squares. In this paper, Euler claimed that a Graeco-Latin square of size n could never exist for any n of the form 4k +2, although he was not able to prove it. In the end, his difficulty was validated. Over a period of 200 years, more than twenty researchers from five countries worked on the problem. Even then, they succeeded only after using techniques from many branches of mathematics including group theory, finite fields, projective geometry, and statistical and block designs; eventually, modern computers were employed to finish the job. A Latin square (of order n) is an n-by-n array of n distinct symbols (usually the integers 1, 2, . , n) in which each symbol appears exactly once in each row and column. Some examples appear in Figure 1. 1 2 4 3 5 4 3 1 2 1 2 3 4 5 2 1 3 3 4 2 1 3 1 2 3 4 1 5 2 1 2 4 3 2 3 1 2 3 5 4 1 2 1 3 4 5 1 3 2 4 Figure 1: Latin squares of orders 3, 4, and 5 A Graeco-Latin square (of order n) is an n-by-n array of ordered pairs from a set of n symbols such that in each row and each column of the array, each symbol appears exactly once in each coordinate, and that each of the n2 possible pairs appears exactly once in the entire square.
    [Show full text]
  • On Orthogonal Latin Squares
    On Orthogonal Latin Squares Yanling Chen NTNU Crypto-Seminar, Nov 9-10, Bergen www.ntnu.no Yanling Chen, On Orthogonal Latin Squares Examples 1234 123 12 2341 1 231 21 3412 ··· 312 4123 2 Latin Square (LS) Definition A Latin square of order n is an n-by-n array in which n distinct symbols are arranged so that each symbol occurs once in each row and column. www.ntnu.no Yanling Chen, On Orthogonal Latin Squares 2 Latin Square (LS) Definition A Latin square of order n is an n-by-n array in which n distinct symbols are arranged so that each symbol occurs once in each row and column. Examples 1234 123 12 2341 1 231 21 3412 ··· 312 4123 www.ntnu.no Yanling Chen, On Orthogonal Latin Squares Example 123 1 2 3 11 22 33 231 3 1 2 23 31 12 ⊥ ⇒ 312 2 3 1 32 13 21 3 Orthogonal Latin Square Definition 2 Latin squares of the same order n are said to be orthogonal if when they overlap, each of the possible n2 ordered pairs occur exactly once. www.ntnu.no Yanling Chen, On Orthogonal Latin Squares 3 Orthogonal Latin Square Definition 2 Latin squares of the same order n are said to be orthogonal if when they overlap, each of the possible n2 ordered pairs occur exactly once. Example 123 1 2 3 11 22 33 231 3 1 2 23 31 12 ⊥ ⇒ 312 2 3 1 32 13 21 www.ntnu.no Yanling Chen, On Orthogonal Latin Squares 4 History Leonhard Euler [Euler 1782] the problem of 36 officers, 6 ranks, 6 regiments • he concluded that no two 6 6LSareorthogonal • × L.
    [Show full text]