High-Resolution Digital Mapping of Soil Organic Carbon in Permafrost Terrain Using Machine Learning: a Case Study in a Sub-Arctic Peatland Environment

Total Page:16

File Type:pdf, Size:1020Kb

High-Resolution Digital Mapping of Soil Organic Carbon in Permafrost Terrain Using Machine Learning: a Case Study in a Sub-Arctic Peatland Environment Biogeosciences, 15, 1663–1682, 2018 https://doi.org/10.5194/bg-15-1663-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment Matthias B. Siewert1,2 1Department of Physical Geography, Stockholm University, Stockholm, 106 91, Sweden 2Department of Ecology and Environmental Science, Umeå University, Umeå, 901 87, Sweden Correspondence: Matthias B. Siewert ([email protected]) Received: 25 July 2017 – Discussion started: 4 August 2017 Revised: 11 January 2018 – Accepted: 13 February 2018 – Published: 21 March 2018 Abstract. Soil organic carbon (SOC) stored in northern peat- ture research needs to investigate the geomorphic response of lands and permafrost-affected soils are key components in permafrost degradation and the fate of SOC across all land- the global carbon cycle. This article quantifies SOC stocks scape compartments in post-permafrost landscapes. in a sub-Arctic mountainous peatland environment in the discontinuous permafrost zone in Abisko, northern Sweden. Four machine-learning techniques are evaluated for SOC quantification: multiple linear regression, artificial neural networks, support vector machine and random forest. The 1 Introduction random forest model performed best and was used to pre- dict SOC for several depth increments at a spatial resolution Northern high latitudes are among the regions most af- of 1 m (1 × 1 m). A high-resolution (1 m) land cover classifi- fected by increasing temperatures and climate change (IPCC, cation generated for this study is the most relevant predictive 2013). Large amounts of soil organic carbon (SOC) and the variable. The landscape mean SOC storage (0–150 cm) is es- abundance of wetlands as a substantial source of methane −2 timated to be 8.3 ± 8.0 kg C m and the SOC stored in the (CH4/, are factors that make this region a key component in top meter (0–100 cm) to be 7.7 ± 6.2 kg C m−2. The predic- the global carbon (C) cycle (McGuire et al., 2009). Frozen tive modeling highlights the relative importance of wetland conditions, cold temperatures and waterlogging are char- areas and in particular peat plateaus for the landscape’s SOC acteristics of wetlands, peatlands and permafrost-affected storage. The total SOC was also predicted at reduced spatial soils that reduce decomposition rates of SOC (Davidson and resolutions of 2, 10, 30, 100, 250 and 1000 m and shows a Janssens, 2006; Ping et al., 2015). This has led to the ac- significant drop in land cover class detail and a tendency to cumulation of large stocks of SOC in high-latitude ecosys- underestimate the SOC at resolutions > 30 m. This is associ- tems (Tarnocai et al., 2009). SOC stocks in the circumpo- ated with the occurrence of many small-scale wetlands form- lar permafrost region are estimated to be ∼ 1300 Pg, includ- ing local hot-spots of SOC storage that are omitted at coarse ing soils to a depth of 3 m and other unconsolidated deposits resolutions. Sharp transitions in SOC storage associated with (Hugelius et al., 2014) . This corresponds to around half of land cover and permafrost distribution are the most challeng- the global SOC stocks (Köchy et al., 2015). A significant pro- ing methodological aspect. However, in this study, at local, portion of this SOC is stored in northern wetland and peat- regional and circum-Arctic scales, the main factor limiting land areas (Gorham, 1991). However, warming temperatures robust SOC mapping efforts is the scarcity of soil pedon data and environmental changes caused by warming of soils and from across the entire environmental space. For the Abisko consequent permafrost degradation are projected to lead to region, past SOC and permafrost dynamics indicate that most a gradual and prolonged release of greenhouse gases in the of the SOC is barely 2000 years old and very dynamic. Fu- future (Schuur et al., 2015). Published by Copernicus Publications on behalf of the European Geosciences Union. 1664 M. B. Siewert: A case study in a sub-Arctic peatland environment Circumpolar mapping efforts of SOC provide important (Åkerman and Johansson, 2008; Johansson et al., 2011), input data for Earth system models. At the same time, high- significant changes in surface structure in peat mires and resolution mapping efforts are necessary to understand the changes in vegetation (Malmer et al., 2005). These changes substantial local-scale spatial and vertical variability of SOC can be associated with increases in landscape-scale CH4 in permafrost-affected soils (Siewert et al., 2015, 2016). The- emissions (Christensen et al., 2004). Analysis of present- matic maps are commonly used to map SOC from point mea- day C fluxes indicate that losses from soil and over the surements to a landscape scale in permafrost environments hydrosphere currently offset C accumulation in peatlands (Hugelius, 2012). This method is used in combination with and aboveground biomass making these ecosystems a C soil maps to estimate SOC storage in the circumpolar per- source (Lundin et al., 2016). To improve our understand- mafrost region using the Northern Circumpolar Soil Carbon ing of these long-term permafrost-region C dynamics, high- Database (NCSCD; Hugelius et al., 2014; Tarnocai et al., resolution maps of landscape distribution and partitioning of 2009). Land cover maps are also used at local to regional SOC are necessary. This should include the vertical parti- scales to estimate SOC values in numerous circumpolar en- tioning of SOC and provide data that can be integrated into vironments (Fuchs et al., 2015; Hugelius et al., 2010, 2011; numerical models (Mishra et al., 2013; Schuur et al., 2015). Hugelius and Kuhry, 2009; Palmtag et al., 2015; Siewert et Combined with a better temporal framework of past C dy- al., 2015; Zubrzycki et al., 2013). While soil maps may bet- namics, this will improve the projection of future climatic ter reflect soil properties and soil forming processes, a land changes. cover classification (LCC) has the advantage that it can be This study aims to compare four different machine- readily generated from remote sensing data using the spa- learning techniques for the prediction of SOC in a high- tial resolution of the respective sensor. However, thematic latitude permafrost and peatland environment. The mapping mapping also represents a strong generalization, as equal soil approach will be discussed with regard to its suitability to properties are assumed for all areas covered by the same estimate SOC stocks in permafrost environments at local to mapping class. Furthermore, for land cover maps there is circumpolar scales using different spatial resolutions. The re- an implicit assumption that land cover alone reflects below- sults will provide high-resolution SOC storage data for a key ground soil properties (Hugelius, 2012). sub-Arctic research site located in Abisko, northern Sweden. An alternative to thematic mapping is the use of predic- The study will give insights into the spatial and vertical par- tive modeling methods. These can yield well-resolved pixel- titioning of the SOC under different land covers and its asso- based estimates of SOC. A comprehensive summary of these ciation with different environmental variables. The temporal methods, commonly called digital soil mapping, is published evolution of the SOC stocks over the Holocene will be inter- by McBratney et al. (2003) and many examples are available, preted from eight radiocarbon dates and the future develop- e.g., in Boettinger et al. (2010). However, in sub-Arctic and ment of SOC stocks and potential C release in high-latitude Arctic permafrost environments, the adoption of predictive environments will be addressed. modeling methods to map soil properties has been limited. Some examples include Bartsch et al. (2016), Baughman et al. (2015), Ding et al. (2016), Mishra and Riley (2012, 2014), 2 Study area and Pastick et al. (2014). The limited adoption has several reasons including the limited availability of environmental The study area is a sub-Arctic mountain environment in the input data, the limited amount of soil pedon data (Mishra et Abisko region near Stordalen, northernmost Sweden (Figs. 1 al., 2013) and the large local-scale variability of permafrost- and 2). Environmental monitoring and research has been con- affected soils (Siewert et al., 2016). To cope with these lim- ducted for more than a century in this region and a par- itations new mapping methods for permafrost environments ticular interest has been the main peatland complex called are necessary to better constrain SOC stocks in the northern Stordalen mire (Callaghan et al., 2013; Jonasson et al., 2012). circumpolar permafrost region (Mishra et al., 2013). Such The mapping extent covers two major peatland complexes, new methods include the use of machine learning in digi- Stordalen and Storflaket, the surrounding birch forest and the tal soil mapping (Hastie et al., 2009; Li et al., 2011). Ma- adjacent alpine tundra zone. The altitude ranges from 342 to chine learning in soil science covers a set of data-mining 932 m a.s.l. The total mapping area is 65 km2. techniques that can recognize patterns in datasets and learn A mean annual air temperature of 0.5 ◦C and a mean an- from these to predict quantitative soil variables. Many algo- nual precipitation of 332 mm have been measured for the rithms are available and robust prediction results are possible period 2002–2011 in Abisko (Callaghan et al., 2013). The (Hastie et al., 2009; Li and Heap, 2008; Li et al., 2011). Test- study area is located in the zone of discontinuous permafrost ing these methods at different spatial resolutions can eventu- (Brown et al., 1997). The onset of late Holocene permafrost ally improve local- and circumpolar-scale estimates of SOC.
Recommended publications
  • Digital Mapping of Soil Properties in the Western-Facing Slope of Jabal
    JJEES (2020) 11 (3): 193-201 JJEES ISSN 1995-6681 Jordan Journal of Earth and Environmental Sciences Digital Mapping of Soil Properties in the Western-Facing Slope of Jabal Al-Arab at Suwaydaa Governorate, Syria Alaa Khallouf 1,4, Sami AlHinawi2, Wassim AlMesber3, Sameer Shamsham4,Younis Idries5 1General Commission for Scientific Agricultural Research (GCSAR), Damascus, Syria 2Suwayda Research Center- GCSAR, Suwayda, Syria 3Damascus University, Faculty of Agriculture, Department of Soil Science, Syria 4Al-Baath University, Faculty of Agriculture, Department of Soil and Land reclamation, Syria 5General Organization of Remote Sensing (GORS), Syria Received 28 December 2019; Accepted 10 April 2020 Abstract Digital soil mapping has been increasingly used to produce statistical models of the relationships between environmental variables and soil properties. This study aimed at determining and representing the spatial distribution of the variability in soil properties of western face-sloping of Jabal Al-Arab, Suwaydaa governorate. pH, organic matter (OM), total nitrogen (N), phosphorus (P, as P2O5), potassium (K, as K2O), iron (Fe), boron (B) and zinc (Zn) were studied, thus, Forty-five surface soil samples (0 to 30 cm) were collected and analyzed. Descriptive statistics demonstrated that most of the measured soil variables (except pH, P2O5, and Zn) were skewed and ab-normally distributed, and logarithmic transformation was then applied. Kriging was used- as geostatistical tool- in ArcGIS to interpolate observed values for those variables, and the digital map layers were produced based on each soil property. Geostatistical interpolation recognized a strong spatial variability for pH, P2O5 & Zn, moderate for OM, N, Fe & B, and weak for K2O.
    [Show full text]
  • Digital Soil Mapping in the Bara District of Nepal Using Kriging Tool in Arcgis
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Agronomy & Horticulture -- Faculty Publications Agronomy and Horticulture Department 10-26-2018 Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS Dinesh Panday University of Nebraska-Lincoln, [email protected] Bijesh Maharjan University of Nebraska-Lincoln, [email protected] Devraj Chalise Nepal Agricultural Research Council Ram Kumar Shrestha Institute of Agriculture and Animal Science, Lamjung, Nepal Bikesh Twanabasu Westfalische Wilhelms Universitat, Munster Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, and the Plant Biology Commons Panday, Dinesh; Maharjan, Bijesh; Chalise, Devraj; Shrestha, Ram Kumar; and Twanabasu, Bikesh, "Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS" (2018). Agronomy & Horticulture -- Faculty Publications. 1130. https://digitalcommons.unl.edu/agronomyfacpub/1130 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. RESEARCH ARTICLE Digital soil mapping in the Bara district of Nepal using kriging tool in ArcGIS 1 1 2 3 Dinesh PandayID *, Bijesh Maharjan , Devraj Chalise , Ram Kumar Shrestha , Bikesh Twanabasu4,5 1 Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America, 2 Nepal Agricultural Research Council, Lalitpur, Nepal, 3 Institute of Agriculture and Animal Science, Lamjung Campus, Lamjung, Nepal, 4 Hexa International Pvt.
    [Show full text]
  • Digital Mapping & Spatial Analysis
    Digital Mapping & Spatial Analysis Zach Silvia Graduate Community of Learning Rachel Starry April 17, 2018 Andrew Tharler Workshop Agenda 1. Visualizing Spatial Data (Andrew) 2. Storytelling with Maps (Rachel) 3. Archaeological Application of GIS (Zach) CARTO ● Map, Interact, Analyze ● Example 1: Bryn Mawr dining options ● Example 2: Carpenter Carrel Project ● Example 3: Terracotta Altars from Morgantina Leaflet: A JavaScript Library http://leafletjs.com Storytelling with maps #1: OdysseyJS (CartoDB) Platform Germany’s way through the World Cup 2014 Tutorial Storytelling with maps #2: Story Maps (ArcGIS) Platform Indiana Limestone (example 1) Ancient Wonders (example 2) Mapping Spatial Data with ArcGIS - Mapping in GIS Basics - Archaeological Applications - Topographic Applications Mapping Spatial Data with ArcGIS What is GIS - Geographic Information System? A geographic information system (GIS) is a framework for gathering, managing, and analyzing data. Rooted in the science of geography, GIS integrates many types of data. It analyzes spatial location and organizes layers of information into visualizations using maps and 3D scenes. With this unique capability, GIS reveals deeper insights into spatial data, such as patterns, relationships, and situations - helping users make smarter decisions. - ESRI GIS dictionary. - ArcGIS by ESRI - industry standard, expensive, intuitive functionality, PC - Q-GIS - open source, industry standard, less than intuitive, Mac and PC - GRASS - developed by the US military, open source - AutoDESK - counterpart to AutoCAD for topography Types of Spatial Data in ArcGIS: Basics Every feature on the planet has its own unique latitude and longitude coordinates: Houses, trees, streets, archaeological finds, you! How do we collect this information? - Remote Sensing: Aerial photography, satellite imaging, LIDAR - On-site Observation: total station data, ground penetrating radar, GPS Types of Spatial Data in ArcGIS: Basics Raster vs.
    [Show full text]
  • Good Practices for the Preparation of Digital Soil Maps
    UNIVERSIDAD DE COSTA RICA CENTRO DE INVESTIGACIONES AGRONÓMICAS FACULTAD DE CIENCIAS AGROALIMENTARIAS GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Resilience and comprehensive risk management in agriculture Inter-american Institute for Cooperation on Agriculture University of Costa Rica Agricultural Research Center UNIVERSIDAD DE COSTA RICA CENTRO DE INVESTIGACIONES AGRONÓMICAS FACULTAD DE CIENCIAS AGROALIMENTARIAS GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Resilience and comprehensive risk management in agriculture Inter-american Institute for Cooperation on Agriculture University of Costa Rica Agricultural Research Center GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Inter-American institute for Cooperation on Agriculture (IICA), 2016 Good practices for the preparation of digital soil maps by IICA is licensed under a Creative Commons Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) (http://creativecommons.org/licenses/by-sa/3.0/igo/) Based on a work at www.iica.int IICA encourages the fair use of this document. Proper citation is requested. This publication is also available in electronic (PDF) format from the Institute’s Web site: http://www.iica. int Content Editorial coordination: Rafael Mata Chinchilla, Dangelo Sandoval Chacón, Jonathan Castro Chinchilla, Foreword .................................................... 5 Christian Solís Salazar Editing in Spanish: Máximo Araya Acronyms .................................................... 6 Layout: Sergio Orellana Caballero Introduction .................................................. 7 Translation into English: Christina Feenny Cover design: Sergio Orellana Caballero Good practices for the preparation of digital soil maps................. 9 Printing: Sergio Orellana Caballero Glossary .................................................... 15 Bibliography ................................................. 18 Good practices for the preparation of digital soil maps / IICA, CIA – San Jose, C.R.: IICA, 2016 00 p.; 00 cm X 00 cm ISBN: 978-92-9248-652-5 1.
    [Show full text]
  • A New Era of Digital Soil Mapping Across Forested Landscapes 14 Chuck Bulmera,*, David Pare´ B, Grant M
    CHAPTER A new era of digital soil mapping across forested landscapes 14 Chuck Bulmera,*, David Pare´ b, Grant M. Domkec aBC Ministry Forests Lands Natural Resource Operations Rural Development, Vernon, BC, Canada, bNatural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC, Canada, cNorthern Research Station, USDA Forest Service, St. Paul, MN, United States *Corresponding author ABSTRACT Soil maps provide essential information for forest management, and a recent transformation of the map making process through digital soil mapping (DSM) is providing much improved soil information compared to what was available through traditional mapping methods. The improvements include higher resolution soil data for greater mapping extents, and incorporating a wide range of environmental factors to predict soil classes and attributes, along with a better understanding of mapping uncertainties. In this chapter, we provide a brief introduction to the concepts and methods underlying the digital soil map, outline the current state of DSM as it relates to forestry and global change, and provide some examples of how DSM can be applied to evaluate soil changes in response to multiple stressors. Throughout the chapter, we highlight the immense potential of DSM, but also describe some of the challenges that need to be overcome to truly realize this potential. Those challenges include finding ways to provide additional field data to train models and validate results, developing a group of highly skilled people with combined abilities in computational science and pedology, as well as the ongoing need to encourage communi- cation between the DSM community, land managers and decision makers whose work we believe can benefit from the new information provided by DSM.
    [Show full text]
  • Evaluation of Digital Soil Mapping Approaches with Large Sets of Environmental Covariates
    SOIL, 4, 1–22, 2018 https://doi.org/10.5194/soil-4-1-2018 © Author(s) 2018. This work is distributed under SOIL the Creative Commons Attribution 3.0 License. Evaluation of digital soil mapping approaches with large sets of environmental covariates Madlene Nussbaum1, Kay Spiess1, Andri Baltensweiler2, Urs Grob3, Armin Keller3, Lucie Greiner3, Michael E. Schaepman4, and Andreas Papritz1 1Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland 2Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903 Birmensdorf, Switzerland 3Research Station Agroscope Reckenholz-Taenikon ART, Reckenholzstrasse 191, 8046 Zürich, Switzerland 4Remote Sensing Laboratories, University of Zurich, Wintherthurerstrasse 190, 8057 Zürich, Switzerland Correspondence: Madlene Nussbaum ([email protected]) Received: 19 April 2017 – Discussion started: 9 May 2017 Revised: 11 October 2017 – Accepted: 24 November 2017 – Published: 10 January 2018 Abstract. The spatial assessment of soil functions requires maps of basic soil properties. Unfortunately, these are either missing for many regions or are not available at the desired spatial resolution or down to the required soil depth. The field-based generation of large soil datasets and conventional soil maps remains costly. Mean- while, legacy soil data and comprehensive sets of spatial environmental data are available for many regions. Digital soil mapping (DSM) approaches relating soil data (responses) to environmental
    [Show full text]
  • The Use of Proximal Soil Sensor Data Fusion and Digital Soil Mapping For
    The use of proximal soil sensor data fusion and digital soil mapping for precision agriculture Wenjun Ji, Viacheslav Adamchuk, Songchao Chen, Asim Biswas, Maxime Leclerc, Raphael Viscarra Rossel To cite this version: Wenjun Ji, Viacheslav Adamchuk, Songchao Chen, Asim Biswas, Maxime Leclerc, et al.. The use of proximal soil sensor data fusion and digital soil mapping for precision agriculture. Pedometrics 2017, Jun 2017, Wageningen, Netherlands. 298 p. hal-01601278 HAL Id: hal-01601278 https://hal.archives-ouvertes.fr/hal-01601278 Submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Abstract Book Pedometrics 2017 Wageningen, 26 June – 1 July 2017 2 Contents Evaluating Use of Ground Penetrating Radar and Geostatistic Methods for Mapping Soil Cemented Horizon .................................... 13 Digital soil mapping in areas of mussunungas: algoritmos comparission .......... 14 Sensing of farm and district-scale soil moisture content using a mobile cosmic ray probe (COSMOS Rover) .................................... 15 Proximal sensing of soil crack networks using three-dimensional electrical resistivity to- mography ......................................... 16 Using digital microscopy for rapid determination of soil texture and prediction of soil organic matter .....................................
    [Show full text]
  • Selection and Use of Soil Characteristics in Digital Soil Mapping in Tanzania
    Selection and use of soil characteristics in digital soil mapping in Tanzania A M. Kilasara ASokoine University of Agriculture, P.O. Box 3008 Morogoro, Tanzania, Email [email protected], [email protected] Abstract A study of soil characteristics was conducted in three different agro-ecological zones representing the humid, sub humid and semi-arid-sub humid zones in East Africa. The selected sites correspond to high potential medium and near-marginal areas for the production of maize. Emphasis was put on the topsoil characteristics which largely influence the performance of soils in terms of crop production in the inter-tropical African region. Topsoil depth, available water capacity, organic carbon content, pH, and bulk density, cation exchange capacity are among the key characteristics that influence the functioning of the studied soils. In certain cases, a few key characteristics determine the soils behaviour while in others the same do not. The selection of which ones are critical for a given soil requires detailed analysis supported by field evidence such as experimental data. Spatial heterogeneity in magnitude of individual soil characteristics was common in all sites. In the future digital soil mapping should provide room for subsequent upgrading of the soil information as more data become available. A digital soil map should be prepared such that it provides a possibility to extract information at various resolutions according to needs. Key Words Soil characterisatiation, digital soil map. Introduction The publication of the soil map of the World in 1981 paved the way for classifying soils using a widely accepted harmonised criteria and nomenclature at the global scale.
    [Show full text]
  • Direct-To-Digital Mapping Methodology: a Hands-On Guidebook for Applying Google Earth
    Steven DeRoy / The Firelight Group / January 2016 Direct-To-Digital Mapping Methodology: A Hands-on Guidebook for Applying Google Earth Copyright © Steven DeRoy and the Firelight Group (www.thefirelightgroup.com) 1 | Page Table of Contents ACKNOWLEDGEMENTS 4 PURPOSE OF THIS GUIDE 4 PREPARE TO MAP 5 DOWNLOAD AND INSTALL GOOGLE EARTH 5 SET UP YOUR FILE FOLDERS ON YOUR COMPUTER 5 INTERVIEW ROOM SETTING 5 START THE INTERVIEW 5 INTERVIEW CHECK LIST 6 INTERVIEW KIT 6 SET UP GOOGLE EARTH 6 CHECK YOUR EQUIPMENT 6 INFORM THE PARTICIPANT AND MAKE THEM COMFORTABLE 6 BEFORE STARTING THE INTERVIEW 7 REMINDERS DURING THE INTERVIEW 7 INTERVIEW OVERVIEW 8 INTRODUCTIONS 8 MAPPING 8 INTERVIEW 8 STORAGE OF RESULTS 8 MAPPING NOTES 9 OVERVIEW OF GOOGLE EARTH 10 WHAT IS GOOGLE EARTH? 10 WHY USE GOOGLE EARTH? 10 HOW ARE GOOGLE EARTH AND MAPS DIFFERENT? 10 INTRODUCTION TO THE GOOGLE EARTH INTERFACE 11 NAVIGATING IN GOOGLE EARTH 11 SET UP YOUR ENVIRONMENT 12 THE “PLACES” PANEL 13 SET UP FOLDERS TO STORE YOUR DATA 13 ORGANIZE YOUR FOLDERS 14 UNDERSTANDING SCALE 14 Copyright © Steven DeRoy and the Firelight Group (www.thefirelightgroup.com) 2 | Page HOW TO MAP IN GOOGLE EARTH 16 WHAT TO RECORD FOR EACH SITE 16 ADDING POINTS (PLACEMARKS) 16 ADDING LINES (PATHS) 18 ADDING AREAS (POLYGONS) 19 EDITING MAPPED DATA 20 INTERVIEWS CONDUCTED WITH NO MAPPING DATA 20 OVERLAYING DATA FROM PAST STUDIES 21 CLOSING OFF THE INTERVIEW 22 SAVING KMZ FILES 22 COPY AND SAVE ALL DIGITAL AUDIO AND VIDEO FILES TO YOUR LAPTOP/COMPUTER 23 BACKUP YOUR FILES 23 USEFUL RESOURCES 24 Copyright © Steven DeRoy and the Firelight Group (www.thefirelightgroup.com) 3 | Page Acknowledgements Steven DeRoy, Director of the Firelight Group, produced this comprehensive guidebook.
    [Show full text]
  • Digital Mapping of Soil Associations and Eroded Soils (Prokhorovskii District, Belgorod Oblast) A
    ISSN 1064-2293, Eurasian Soil Science, 2021, Vol. 54, No. 1, pp. 13–24. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Pochvovedenie, 2021, No. 1, pp. 17–30. GENESIS AND GEOGRAPHY OF SOILS Digital Mapping of Soil Associations and Eroded Soils (Prokhorovskii District, Belgorod Oblast) A. P. Zhidkina, *, M. A. Smirnovaa, b, A. N. Gennadievb, S. V. Lukinc, Ye. A. Zazdravnykhd, and N. I. Lozbeneva aDokuchaev Soil Science Institute, per. Pyzhevskii 7, Moscow, 119017 Russia bLomonosov Moscow State University, Leninskie Gory 1, Moscow, 119999 Russia cBelgorod State University, ul. Pobedy 85, Belgorod, 308015 Russia. dBelgorod Agrarian Center, ul. Shchorsa 8, Belgorod, 308027 Russia *e-mail: [email protected] Received April 19, 2020; revised May 24, 2020; accepted June 17, 2020 Abstract—A new method of digital mapping of the soil cover pattern with calculation of the share of soils of different taxa and degree classes for soil erosion in the soil associations is proposed. A comparative analysis of soil maps obtained using different methods of construction (visual expert and digital) and with their differ- ent contents (displaying the dominant soil or soil associations) has been performed. In the case of mapping by the visual expert method (with the display of the dominant soil), a significant underestimation of the total area of moderately and strongly eroded soils in comparison with the digital mapping is noted. These differ- ences are due to the underestimation of the area of small polygons with moderately and strongly eroded soils in the composition of soil associations on slopes of low steepness and in shallow hollows in the visual expert method of mapping.
    [Show full text]
  • Digital Mapping Techniques ‘02— Workshop Proceedings
    cov02 5/20/03 3:19 PM Page 1 So Digital Mapping Techniques ‘02— Workshop Proceedings May 19-22, 2002 Salt Lake City, Utah Convened by the Association of American State Geologists and the United States Geological Survey Hosted by the Utah Geological Survey U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 02-370 Printed on recycled paper CONTENTS I U.S. Department of the Interior U.S. Geological Survey Digital Mapping Techniques ʻ02— Workshop Proceedings Edited by David R. Soller May 19-22, 2002 Salt Lake City, Utah Convened by the Association of American State Geologists and the United States Geological Survey Hosted by the Utah Geological Survey U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 02-370 2002 II CONTENTS CONTENTS III This report is preliminary and has not been reviewed for conformity with the U.S. Geological Survey editorial standards. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government or State governments II CONTENTS CONTENTS III CONTENTS Introduction By David R. Soller (U.S. Geological Survey). 1 Oral Presentations The Value of Geologic Maps and the Need for Digitally Vectorized Data By James C. Cobb (Kentucky Geological Survey) . 3 Compilation of a 1:24,000-Scale Geologic Map Database, Phoenix Metropoli- tan Area By Stephen M. Richard and Tim R. Orr (Arizona Geological Survey). 7 Distributed Spatial Databases—The MIDCARB Carbon Sequestration Project By Gerald A. Weisenfluh (Kentucky Geological Survey), Nathan K. Eaton (Indiana Geological Survey), and Ken Nelson (Kansas Geological Survey) .
    [Show full text]
  • Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2015 Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah Brook B. Fonnesbeck Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Soil Science Commons Recommended Citation Fonnesbeck, Brook B., "Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah" (2015). All Graduate Theses and Dissertations. 4525. https://digitalcommons.usu.edu/etd/4525 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DIGITAL SOIL MAPPING USING LANDSCAPE STRATIFICATION FOR ARID RANGELANDS IN THE EASTERN GREAT BASIN, CENTRAL UTAH by Brook B. Fonnesbeck A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Soil Science Approved: _____________________________ _____________________________ Dr. Janis L. Boettinger Dr. Joel L. Pederson Major Professor Committee Member _____________________________ _____________________________ Dr. R Douglas Ramsey Dr. Mark R. McLellan Committee Member Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2015 ii Copyright © Brook B. Fonnesbeck 2015 iii ABSTRACT Digital Soil Mapping Using Landscape Stratification for Arid Rangelands in the Eastern Great Basin, Central Utah by Brook B. Fonnesbeck, Master of Science Utah State University, 2015 Major Professor: Dr. Janis L. Boettinger Department: Plants, Soils and Climate Digital soil mapping typically involves inputs of digital elevation models, remotely sensed imagery, and other spatially explicit digital data as environmental covariates to predict soil classes and attributes over a landscape using statistical models.
    [Show full text]