Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes Diabetes Volume 67, April 2018 687 Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes Deborah Kronenberg-Versteeg,1,2 Martin Eichmann,1 Mark A. Russell,3 Arnoud de Ru,4 Beate Hehn,5 Norkhairin Yusuf,1 Peter A. van Veelen,4 Sarah J. Richardson,3 Noel G. Morgan,3 Marius K. Lemberg,5 and Mark Peakman1,2 Diabetes 2018;67:687–696 | https://doi.org/10.2337/db17-0021 The signal peptide region of preproinsulin (PPI) contains In type 1 diabetes, the pathological process of immune- epitopes targeted by HLA-A-restricted (HLA-A0201, A2402) mediated destruction of insulin-producing b-cells leads to IMMUNOLOGY AND TRANSPLANTATION cytotoxic T cells as part of the pathogenesis of b-cell de- insulin deficiency and hyperglycemia (1). Multiple arms of struction in type 1 diabetes. We extended the discovery of the immune system are likely to contribute to this tissue- the PPI epitope to disease-associated HLA-B*1801 and damaging process, with strong indications that CD8+ cyto- HLA-B*3906 (risk) and HLA-A*1101 and HLA-B*3801 (pro- toxic T lymphocytes (CTLs) are a dominant killing pathway. tective) alleles, revealing that four of six alleles present Evidence includes data from preclinical models showing de- epitopes derived from the signal peptide region. During pendence of disease development on intact CD8/MHC class cotranslational translocation of PPI, its signal peptide is I mechanisms (2), supported by compelling findings in hu- cleaved and retained within the endoplasmic reticulum man studies, including the existence of high-risk polymor- (ER) membrane, implying it is processed for immune phic HLA class I genes (3); enrichment of effector CTLs recognition outside of the canonical proteasome-directed specificforb-cell targets in the circulation in new-onset pathway. Using in vitro translocation assays with specific disease (4,5); recapitulation of b-cell killing by patient- inhibitors and gene knockout in PPI-expressing target derived preproinsulin (PPI)-specificCTLsinvitro(4,6); cells, we show that PPI signal peptide antigen processing CD8 T-cell dominance of islet infiltrates in patients, includ- requires signal peptide peptidase (SPP). The intramem- ing the presence of CD8s bearing receptors specificfor brane protease SPP generates cytoplasm-proximal epito- b-cell autoantigens (7,8); hyperexpression of HLA class I, pes, which are transporter associated with antigen processing both at the RNA and protein levels, in residual insulin- (TAP), ER-luminal epitopes, which are TAP independent, containing islets (ICIs) in type 1 diabetes pancreatic tissue each presented by different HLA class I molecules and (9); and recent success in halting b-cell loss using immuno- N-terminal trimmed by ER aminopeptidase 1 for optimal therapy targeted at effector CD8 T cells (10). presentation. In vivo, TAP expression is significantly The potential for the immunological dialogue between upregulated and correlated with HLA class I hyperexpression CTLs and b-cells to be a key component of the development in insulin-containing islets of patients with type 1 diabetes. of type 1 diabetes has led several groups to focus on the Thus, PPI signal peptide epitopes are processed by SPP relevant molecular interactions that govern this interface, and loaded for HLA-guided immune recognition via path- including studies of HLA class I gene polymorphisms carry- ways that are enhanced during disease pathogenesis. ing modified risk of disease (HLA-A*0201,-A*1101,-A*2402, 1Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s Received 5 January 2017 and accepted 10 January 2018. College London, London, U.K. This article contains Supplementary Data online at http://diabetes 2 ’ National Institute for Health Research, Biomedical Research Centre at Guy s and .diabetesjournals.org/lookup/suppl/doi:10.2337/db17-0021/-/DC1. St. Thomas’ Hospital Foundation Trust and King’s College London, London, U.K. D.K.-V. and M.E. contributed equally to this work. 3Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K. D.K.-V. is currently affiliated with the Wellcome Trust – Medical Research Council 4Department of Immunohematology and Blood Transfusion, Leiden University Cambridge Stem Cell Institute, University of Cambridge, Cambridge, U.K. Medical Center, Leiden, the Netherlands © 2018 by the American Diabetes Association. Readers may use this article as 5Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Al- long as the work is properly cited, the use is educational and not for profit, and the liance, Heidelberg, Germany work is not altered. More information is available at http://www.diabetesjournals Corresponding author: Deborah Kronenberg-Versteeg, [email protected]. .org/content/license. 688 Preproinsulin Processing for Immune Recognition Diabetes Volume 67, April 2018 -B*1801,-B*3801,and-B*3906 [3,11,12]) and antigenic tar- RESEARCH DESIGN AND METHODS gets within b-cells recognized by CTLs. These have espe- Cell Lines and Epitope Discovery cially focused on PPI, which is considered a primary target K562 cells transfected with HLA-A*1101, HLA-B*1801, in b-cell autoimmunity because anti-insulin autoantibodies HLA-B*3801,orHLA-B*3906 and PPI cDNAs (K562-HLA- fi are frequently the rst disease manifestation in high-risk PPI cells) were generated as described previously (4). Ex- children (12). pression of HLA class I was confirmed by flow cytometry For immune recognition, processing and presentation of (anti-HLA-ABC antibody W6/32; Serotec, Oxford, U.K.). peptides by MHC class I commonly results from degrada- Proinsulin was detected in supernatants by ELISA (DRG tion of proteins by the proteasome (13), generating cytosolic International, Marburg, Germany). Subsequently, ;1010 – peptides of 8 16 amino acids (14), which are transported cells from each cell line were harvested and immunoaffinity into the endoplasmic reticulum (ER) lumen via the trans- purification of HLA-A1101, HLA-B1801, HLA-B3801, and porter associated with antigen processing (TAP) (15), part HLA-B3906, peptide extraction and nano high-performance of the MHC class I peptide loading complex (16). ER ami- liquid chromatography–mass spectrometry performed as nopeptidase (ERAP) 1 trims peptides to a suitable length described elsewhere (4,6,27,28). for MHC loading, if required (17), and peptide-MHC complexes are delivered to the cell surface for immune rec- Inhibitors, RNA Interference and T-Cell Clone Activation ognition. Proteasome-independent, cytoplasm-based nonca- K562-A24-PPI cells were transfected twice within 48 h with nonical antigen presentation pathways have also been 20 nmol/L small interfering RNAs (Applied Biosystems, described (18). Whereas these and the canonical route col- Foster City, CA) targeting B2M (s1852), ERAP1 (s28618), lectively require TAP to delivery peptides into the ER, signal ERAP2 (s34520), TAP1 (s13778, s13780), and TAP2 (s13781, peptide epitopes from secretory proteins may be MHC- s13782, s13783) using Lipofectamine RNAiMAX (Invitrogen, loaded independently of TAP (19) after signal peptidase Paisley, U.K.). Knockdown was assessed by RT-PCR us- cleavage and intramembrane proteolysis by signal peptide ing TaqMan-specific primers and relative cDNA content peptidase (SPP) (20–22). Interestingly, peptides originating normalized to GAPDH gene expression. CD8 T-cell clones from the ER luminal side of the signal peptide can access for PPI3–11-HLA-A2402 and PPI15–24-HLA-A0201 (4,6) were the peptide loading complex directly (23–25), whereas cocultured with K562-HLA-PPI target cells at indicated epitopes close to the cytosol may require proteasomal trim- effector-to-target ratios (4 h), and response was measured ming and TAP for entry into the ER (26). However, the as degranulation (CD107a expression [29]) or macrophage extent to which signal peptides and these noncanonical inflammatory protein 1b (MIP-1b) release (R&D Systems, epitope-generation pathways fuel immune recognition of Minneapolis, MN). single antigens and play a role in physiological responses Site-Directed Mutagenesis remains unclear. To alter single or multiple amino acids (highlighted in Sup- This study was motivated by the need for a better un- plementary Table 1), PPI-containing plasmid pcDNA3/PPI derstanding of autoantigen processing for immune recog- was amplified using altered primers (PPI9P→L, CCC→CTC; nition of b-cells via these different routes, which could PPI12A→L, GCG→CTG; PPI15A→L, GCC→CTC; with 18- to provide novel insights into disease pathogenesis and high- 20-nucleotide overhang preceding and following the mu- light pathways susceptible to therapeutic manipulation. We tatedsite)andPfuTurboDNAPolymeraseAD(Agilent previously reported that the predominant epitope species Technologies, Santa Clara, CA); sequences were confirmed presented to CTLs by human cell lines cotransfected with before use. the INS gene (encoding PPI) and the HLA class I genes HLA- A*0201 and A*2402 derived from the signal peptide region In Vitro Transcription, Translation, and Translocation (4,6). These signal peptide–derived epitopes are recognized and Analysis of SPP Processing by patient CTLs and presented by b-cells bearing the rele- Plasmid pcDNA3/PPI was linearized with EcoRI and tran- vant HLA class I molecule. Here we examine whether PPI scribed in vitro with T7 RNA polymerase at 42°C using signal peptide is a more general source of epitopes by study- 500 mmol/L m7G(59)ppp(59)G CAP analog (New England ing additional HLA class I molecules associated with type 1 Biolabs, Ipswich, MA) (30). mRNAs were translated in vitro diabetes. We show that generation of epitopes from the PPI in 25 mL rabbit reticulocyte lysate (Promega, Madison, WI) signal peptide is driven by the intramembrane protease containing [35S]-methionine and [35S]-cysteine (PerkinElmer, SPP and that loading into nascent HLA class I molecules Waltham, MA) and, where indicated, two equivalents of requires trimming by ERAP1 and is either direct or follows nuclease-treated dog pancreas rough microsomes (31). cytoplasmic translocation and TAP, with the selected path- (Z-LL)2-ketone (Calbiochem SPP inhibitor, 5 mmol/L; Merck, way being determined by the HLA allele.
Recommended publications
  • Processing and Presentation of Glycoproteins in the MHC Class I and II Antigen Presentation Pathways Denise Golgher, Tim Elliott and Mark Howarth
    CHAPTER 11 Processing and Presentation of Glycoproteins in the MHC Class I and II Antigen Presentation Pathways Denise Golgher, Tim Elliott and Mark Howarth Abstract D8+ and CD4+ T cells are stimulated by peptides bound to MHC class I and II respec- tively. The processing pathways for the generation of class I or class II binding peptides C are specialized in surveying different intracellular compartments. While class I peptide loading occurs in the ER, class II loading occurs in the endocytic compartments. Many of the peptides generated in either compartment are derived from glycoproteins from normal or malignant cells or from intracellular or extracellular pathogens. In a given polypeptide there are potentially many T cell epitopes but only a few actually bind to the MHC molecules and generate a T cell response, while many others are cryptic. The carbohydrate moiety present in glycoproteins has been shown to influence the antigen processing pathway and generation of T cell epitopes in different ways. It can stabilize a certain three-dimensional conformation of the glycoprotein determining which sites are more accessible to proteases, it can hinder the access of proteases or block certain sites, it can target exogenous antigen to different antigen presenting cells and it can also be part of the epitope that will stimulate T cells. Changes in glycosylation patterns are common in malignancies, age and pathological mechanisms. These changes have the potential to alter the hierarchy of peptides that will bind to MHC molecules and induce a T cell response that would otherwise be cryptic, causing the onset of undesirable immune responses as is the case for autoimmune processes.
    [Show full text]
  • New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology
    Cancer Research and Treatment 2003;35(4):304-313 New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology Yong-Wan Kim, Ph.D.1, Min-Je Suh, M.S.1, Jin-Sik Bae, M.S.1, Su Mi Bae, M.S.1, Joo Hee Yoon, M.D.2, Soo Young Hur, M.D.2, Jae Hoon Kim, M.D.2, Duck Young Ro, M.D.2, Joon Mo Lee, M.D.2, Sung Eun Namkoong, M.D.2, Chong Kook Kim, Ph.D.3 and Woong Shick Ahn, M.D.2 1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul; 3College of Pharmacy, Seoul National University, Seoul, Korea Purpose: This study utilized both mRNA differential significant genes of unknown function affected by the display and the Gene Ontology (GO) analysis to char- HPV-16-derived pathway. The GO analysis suggested that acterize the multiple interactions of a number of genes the cervical cancer cells underwent repression of the with gene expression profiles involved in the HPV-16- cancer-specific cell adhesive properties. Also, genes induced cervical carcinogenesis. belonging to DNA metabolism, such as DNA repair and Materials and Methods: mRNA differential displays, replication, were strongly down-regulated, whereas sig- with HPV-16 positive cervical cancer cell line (SiHa), and nificant increases were shown in the protein degradation normal human keratinocyte cell line (HaCaT) as a con- and synthesis. trol, were used. Each human gene has several biological Conclusion: The GO analysis can overcome the com- functions in the Gene Ontology; therefore, several func- plexity of the gene expression profile of the HPV-16- tions of each gene were chosen to establish a powerful associated pathway, identify several cancer-specific cel- cervical carcinogenesis pathway.
    [Show full text]
  • (GLP-1) in Transgenic Plants
    The Open Biotechnology Journal, 2009, 3, 57-66 57 Open Access A Proficient Approach to the Production of Therapeutic Glucagon-Like Peptide-1 (GLP-1) in Transgenic Plants M. Brandsma1, X. Wang1, H. Diao2,3, S.E. Kohalmi1, A.M. Jevnikar2,3 and S. Ma1,2,3,* 1Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada 2Transplantation Immunology Group, Lawson Health Research Institute, London, Ontario, N6A 4G5, Canada 3Plantigen Inc., 700 Collip Circle, London, Ontario, N6G 4X8, Canada Abstract: Glucagon-like peptide-1 (GLP-1) is a small peptide hormone with potent insulinotropic activity and represents a promising new therapeutic tool for the treatment of diabetes. Like many other therapeutic peptides, GLP-1 is commonly produced using chemical synthesis methods, but is limited by product quantity and cost. The advent of recombinant DNA technology offers the possibility of producing GLP-1 inexpensively and in vast quantities. In this study, transgenic plants were used as a recombinant expression platform for the production of GLP-1 as a large multimeric protein. A synthetic gene encoding ten sequential tandem repeats of GLP-1 sequence (GLP-1x10) was produced and introduced into tobacco plants. Transcriptional expression of the GLP1x10 gene in transgenic plants was confirmed by RT-PCR. Western blot analysis showed that the GLP-1x10 protein efficiently accumulated in transgenic plants, with an accumulation level as high as 0.15% of total soluble protein in leaves. Importantly, insulin secretion assays using a mouse pancreatic cell line (MIN6), showed that plant-derived GLP-1 in its synthetic decamer form, retained its ability to stimulate cellular insulin secretion, although with reduced efficacy.
    [Show full text]
  • Isolation and Proteomics of the Insulin Secretory Granule
    H OH metabolites OH Review Isolation and Proteomics of the Insulin Secretory Granule Nicholas Norris , Belinda Yau * and Melkam Alamerew Kebede Charles Perkins Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia; [email protected] (N.N.); [email protected] (M.A.K.) * Correspondence: [email protected] Abstract: Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions. Keywords: insulin secretory granule; beta-cells; granule protein purification 1. Insulin Granule Biogenesis and Function Citation: Norris, N.; Yau, B.; Kebede, The insulin secretory granule (ISG) is the storage vesicle for insulin in pancreatic M.A. Isolation and Proteomics of the beta-cells. It was long treated as an inert carrier for insulin but is now appreciated as a Insulin Secretory Granule.
    [Show full text]
  • The Landscape of Genomic Imprinting Across Diverse Adult Human Tissues
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Research The landscape of genomic imprinting across diverse adult human tissues Yael Baran,1 Meena Subramaniam,2 Anne Biton,2 Taru Tukiainen,3,4 Emily K. Tsang,5,6 Manuel A. Rivas,7 Matti Pirinen,8 Maria Gutierrez-Arcelus,9 Kevin S. Smith,5,10 Kim R. Kukurba,5,10 Rui Zhang,10 Celeste Eng,2 Dara G. Torgerson,2 Cydney Urbanek,11 the GTEx Consortium, Jin Billy Li,10 Jose R. Rodriguez-Santana,12 Esteban G. Burchard,2,13 Max A. Seibold,11,14,15 Daniel G. MacArthur,3,4,16 Stephen B. Montgomery,5,10 Noah A. Zaitlen,2,19 and Tuuli Lappalainen17,18,19 1The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel; 2Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; 3Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 4Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; 5Department of Pathology, Stanford University, Stanford, California 94305, USA; 6Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA; 7Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom; 8Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland; 9Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland;
    [Show full text]
  • Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes
    258 Diabetes Care Volume 42, February 2019 Proinsulin Secretion Is a Emily K. Sims,1,2 Henry T. Bahnson,3 Julius Nyalwidhe,4 Leena Haataja,5 Persistent Feature of Type 1 Asa K. Davis,3 Cate Speake,3 Linda A. DiMeglio,1,2 Janice Blum,6 Diabetes Margaret A. Morris,7 Raghavendra G. Mirmira,1,2,8,9,10 7 10,11 Diabetes Care 2019;42:258–264 | https://doi.org/10.2337/dc17-2625 Jerry Nadler, Teresa L. Mastracci, Santica Marcovina,12 Wei-Jun Qian,13 Lian Yi,13 Adam C. Swensen,13 Michele Yip-Schneider,14 C. Max Schmidt,14 Robert V. Considine,9 Peter Arvan,5 Carla J. Greenbaum,3 Carmella Evans-Molina,2,8,9,10,15 and the T1D Exchange Residual C-peptide Study Group* OBJECTIVE Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin. RESEARCH DESIGN AND METHODS C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (‡3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) 1Department of Pediatrics, Indiana University ‡ 2 School of Medicine, Indianapolis, IN C-peptide positive, with high stimulated values 0.2 nmol/L; ) C-peptide posi- 2 tive, with low stimulated values ‡0.017 but <0.2 nmol/L; and 3)C-peptide Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indian- <0.017 nmol/L.
    [Show full text]
  • PDIA3 Recombinant Protein Description Product Info
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 32-2652: PDIA3 Recombinant Protein ERp57,ERp60,ERp61,GRP57,GRP58,HsT17083,P58,PI-PLC,ER60,Protein disulfide-isomerase A3,Disulfide Alternative isomerase ER-60,Endoplasmic reticulum resident protein 60,ER protein 60,58 kDa microsomal Name : protein,Endoplasmic reticulum resident protein 57, Description Source : Escherichia Coli. PDIA3 Human Recombinant produced in E.Coli is a single, non-glycosylated polypeptide chain containing 518 amino acids (25-505 a.a.) and having a molecular wieght of 58.5 kDa. The PDIA3 is fused to 37 a.a. His-Tag at N-terminus and purified by proprietary chromatographic techniques. PDIA3 is an enzyme that belongs to the endoplasmic reticulum and interacts with lectin chaperones calreticulin and calnexin to modulate folding of newly synthesized glycoproteins. PDIA3 has protein disulfide isomerase activity. Complexes of lectins and PDIA3 mediate protein folding by promoting formation of disulfide bonds in their glycoprotein substrates. PDIA3 is expressed in the lumbar spinal cord from rats submitted to peripheral lesion during neonatal period. PDIA3 interacts with thiazide-sensitive sodium-chloride cotransporter in the kidney and is induced by glucose deprivation. PDIA3 is part of the major histocompatibility complex (MHC) class I peptide-loading complex (TAP1), which is important for formation of the final antigen conformation and export from the endoplasmic reticulum to the cell surface. Product Info Amount : 25 µg Purification : Greater than 95.0% as determined by SDS-PAGE. The PDIA3 protein solution contains 20mM Tris-HCl, pH-8, 1mM DTT, 0.1M NaCl and 10% Content : glycerol.
    [Show full text]
  • Ectopic Expression of Glucagon-Like Peptide 1 for Gene Therapy of Type II Diabetes
    Gene Therapy (2007) 14, 38–48 & 2007 Nature Publishing Group All rights reserved 0969-7128/07 $30.00 www.nature.com/gt ORIGINAL ARTICLE Ectopic expression of glucagon-like peptide 1 for gene therapy of type II diabetes GB Parsons, DW Souza, H Wu, D Yu, SG Wadsworth, RJ Gregory and D Armentano Department of Molecular Biology, Genzyme Corporation, Framingham, MA, USA Glucagon-like peptide 1 (GLP-1) is a promising candidate for lowered both the fasting and random-fed hyperglycemia the treatment of type II diabetes. However, the short in vivo present in these animals. Because the insulinotropic actions half-life of GLP-1 has made peptide-based treatments of GLP-1 are glucose dependent, no evidence of hypogly- challenging. Gene therapy aimed at achieving continuous cemia was observed. Improved glucose homeostasis was GLP-1 expression presents one way to circumvent the rapid demonstrated by improvements in %HbA1c (glycated he- turnover of GLP-1. We have created a GLP-1 minigene that moglobin) and in glucose tolerance tests. GLP-1-treated can direct the secretion of active GLP-1 (amino acids 7–37). animals had higher circulating insulin levels and increased Plasmid and adenoviral expression vectors encoding the 31- insulin immunostaining of pancreatic sections. GLP-1-treated amino-acid peptide linked to leader sequences required for ZDF rats showed diminished food intake and, in the first few secretion of GLP-1 yielded sustained levels of active GLP-1 weeks following vector administration, a diminished weight that were significantly greater than endogenous levels. gain. These results demonstrate the feasibility of gene Systemic administration of expression vectors to animals therapy for type II diabetes using GLP-1 expression vectors.
    [Show full text]
  • Vigilin Interacts with Signal Peptide Peptidase
    Lu et al. Proteome Science 2012, 10:33 http://www.proteomesci.com/content/10/1/33 RESEARCH Open Access Vigilin interacts with signal peptide peptidase Stephen Hsueh-Jeng Lu1, Amy Hye Won Jeon2, Gerold Schmitt-Ulms2, Seema Qamar1, Roger Dodd1, Beth McDonald1,YiLi1, William Meadows1, Katie Cox1, Christopher Bohm2, Fusheng Chen2, Paul Fraser2 and Peter St George-Hyslop1,2* Abstract Background: Signal peptide peptidase (SPP), a member of the presenilin-like intra-membrane cleaving aspartyl protease family, migrates on Blue Native (BN) gels as 100 kDa, 200 kDa and 450 kDa species. SPP has recently been implicated in other non-proteolytic functions such as retro-translocation of MHC Class I molecules and binding of misfolded proteins in the endoplasmic reticulum (ER). These high molecular weight SPP complexes might contain additional proteins that regulate the proteolytic activity of SPP or support its non-catalytic functions. Results: In this study, an unbiased iTRAQ-labeling mass spectrometry approach was used to identify SPP-interacting proteins. We found that vigilin, a ubiquitous multi-KH domain containing cytoplasmic protein involved in RNA binding and protein translation control, selectively enriched with SPP. Vigilin interacted with SPP and both proteins co-localized in restricted intracellular domains near the ER, biochemically co-fractionated and were part of the same 450 kDa complex on BN gels. However, vigilin does not alter the protease activity of SPP, suggesting that the SPP-vigilin interaction might be involved in the non-proteolytic functions of SPP. Conclusions: We have identified and validated vigilin as a novel interacting partner of SPP that could play an important role in the non-proteolytic functions of SPP.
    [Show full text]
  • Signaling Peptides in Plants
    lopmen ve ta e l B D io & l l o l g e y C Cell & Developmental Biology Ghorbani, et al., Cell Dev Biol 2014, 3:2 ISSN: 2168-9296 DOI: 10.4172/2168-9296.1000141 Review Article Open Access Signaling Peptides in Plants Sarieh Ghorbani1,2, Ana Fernandez1,2, Pierre Hilson3,4 and Tom Beeckman1,2* 1Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium 2Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium 3INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France 4AgroParisTech, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France *Corresponding author: Tom Beeckman, Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium, Tel: 32-0-93313830; E-mail: [email protected] Rec date: May 03, 2014; Acc date: Jun 16, 2014; Pub date: Jun 18, 2014 Copyright: © 2014 Ghorbani S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract In multicellular organisms, growth and development need to be precisely coordinated and are strongly relying on positional information. Positional control is achieved through exchanges of molecular messages between cells and tissues by means of cell-to-cell communication mechanisms. Especially in plants, accurate and well-controlled cell-to-cell communication networks are essential because of the complete absence of cell mobility and the presence of rigid cell walls. For many years, phytohormones were thought to be the main messengers exchanged between cells.
    [Show full text]
  • Glucagon-Like Peptide-1 and Its Class BG Protein–Coupled Receptors
    1521-0081/68/4/954–1013$25.00 http://dx.doi.org/10.1124/pr.115.011395 PHARMACOLOGICAL REVIEWS Pharmacol Rev 68:954–1013, October 2016 Copyright © 2016 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: RICHARD DEQUAN YE Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes Chris de Graaf, Dan Donnelly, Denise Wootten, Jesper Lau, Patrick M. Sexton, Laurence J. Miller, Jung-Mo Ahn, Jiayu Liao, Madeleine M. Fletcher, Dehua Yang, Alastair J. H. Brown, Caihong Zhou, Jiejie Deng, and Ming-Wei Wang Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.) Downloaded from Abstract.
    [Show full text]
  • Islet Amyloid Polypeptide (Amylin): No Evidence of an Abnormal Precursor Sequence in 25 Type 2 (Non-Insulin-Dependent) Diabetic Patients
    Diabetologia (1990) 33:628-630 Diabetologia Springer-Verlag1990 Islet amyloid polypeptide (amylin): no evidence of an abnormal precursor sequence in 25 Type 2 (non-insulin-dependent) diabetic patients M. Nishi 1, G. I. Bell 1'2'3 and D. E Steiner ~'2'3 Departments of Biochemistry and Molecular Biology and 2 Medicine, and 3 Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois, USA Summary. Islet amyloid polypeptide is the major protein quenced. The nucleotide sequences of the amplified regions component of the islet amyloid of patients with Type 2 (non- of both alleles of the islet amyloid polypeptide gene of these insulin-dependent) diabetes mellitus. Since the synthesis of a 25 patients were identical to one another and to the sequence structurally abnormal or mutant protein may contribute to of an islet amyloid polypeptide allele isolated from a human the formation of amyloid deposits, we have examined the fetal liver genomic library. These findings suggest that a pri- possibility that a mutant form of islet amytoid polypeptide or mary structural abnormality of islet amyloid polypeptide or its precursor contributes to the formation of islet amyloid in its precursor is unlikely to play a significant role in the forma- Type 2 diabetic patients. We have sequenced the islet amy- tion of islet amyloid in Type 2 diabetic patients. loid polypeptide precursor coding regions of the gene of 25 patients with Type 2 diabetes. Genomic DNA fragments Key words: Islet amyloid polypeptide, Type 2 (non-insulin- corresponding to exon 2 and 3 of the islet amyloid polypep- dependent) diabetes mellitus, polymerase chain reaction, tide gene were amplified from patients' peripheral blood direct sequencing, maturity onset diabetes mellitus of the leucocyte DNAs using the polymerase chain reaction and young (MODY), Pima Indian.
    [Show full text]