Incremental Formal Verification of Hardware

Total Page:16

File Type:pdf, Size:1020Kb

Incremental Formal Verification of Hardware Incremental Formal Verification of Hardware Hana Chockler, Alexander Ivrii, Arie Matsliah, Shiri Moran, Ziv Nevo IBM Research – Haifa E-mail:fhanac,alexi,ariem,shirim,[email protected] Abstract—Formal verification is a reliable and fully problem is especially acute in regression verification, automatic technique for proving correctness of hardware where a new version of a hardware design is re-verified designs. Its main drawback is the high complexity of veri- with respect to the same (or very similar) specification. fication, and this problem is especially acute in regression verification, where a new version of the design, differing Since regression verification is a only a preliminary from the previous version very slightly, is verified with (albeit necessary) stage in functional verification of a respect to the same or a very similar property. In this new version, the time and effort allocated to it are usually paper, we present an efficient algorithm for incremental much lower than for the initial verification; in reality, verification, based on the ic3 algorithm, that uses stored since the amount of effort is the same as for the initial information from the previous verification runs in order to improve the complexity of re-verifying similar designs verification, our experience is that regression verification on similar properties. Our algorithm applies both to the is often not performed thoroughly enough, thus possibly positive and to the negative results of verification (that is, leading to lower quality designs.1 A better option would both when there is a proof of correctness and when there be to verify the changes incrementally, that is, to reuse is a counterexample). The algorithm is implemented and the results from the previous execution and only verify experimental results show improvement of up to two orders of magnitude in running time, compared to full verification. the change. Another area in which incremental verification tech- niques are in dire need is coverage computation in formal I. INTRODUCTION verification. Most of the existing work on coverage in formal verification is based on the notion of mutation Today’s rapid development of complex hardware de- coverage, where small mutations are introduced to the formal signs requires reliable verification methods. In design and the mutant designs are checked with re- verification , we verify the correctness of a design with spect to the original specification [HKHZ99], [CKV06b], respect to a desired behavior by checking whether a [CKV06a], [KLS08], [CKP10], with the goal of check- labeled state-transition graph that models the design ing thoroughness of formal specifications. Efficient in- satisfies a specification of this behavior, expressed in cremental verification techniques can reduce the cost of terms of a temporal logic formula or a finite automaton computing mutation coverage, where a large number of [CGP99]. The main advantages of formal verification slightly modified designs need to be checked with respect tools are their reliability (if a design passes verification, to the same property. then it is 100% correct with respect the specification), Several papers view the problem of incremental ver- full automation of the verification process, and the ability ification as an instance of dynamic graph algorithms. of the tools to accompany a negative answer to the In this setting, a design is represented as a graph and correctness query by a counterexample to the satisfaction incremental verification checks the influence of small of the specification in the design [CGMZ95]. changes in the graph (edge insertion and removal) on the The main drawback of the formal verification tech- properties that were previously satisfied in this graph, nology, and the one that prevents it from being even thus reducing the problem of incremental verification more widely used in the hardware industry, is that it to a dynamic graph problem. However, dynamic graph requires significant computational effort, even for mod- connectivity, one of the main problems in dynamic graph erately sized designs. Moreover, when small changes algorithms, and the one that is most relevant to verifi- are introduced into the design or the specification, for cation, is an open problem, hence this reduction is of example due to a bug fix or an upgrade, the whole design limited value in practice [SBS95], [CK03]. A somewhat needs to be re-verified, generally requiring the same related direction is using the reduction to dynamic graph amount of resources as for the initial verification. The 1Our experience is based on participating in the formal verification This work is partially supported by the European Community under of IBM hardware designs, as well as on discussions with formal the call FP7-ICT-2009-5 – project PINCETTE 257647. verification engineers in other companies. problems in order to prove complexity results for LTL finder can be used as a starting point of subsequent ic3’s model checking of evolving designs with non-changing execution, with minor modifications to the algorithm. properties [KW03]. Similarly, our algorithm allows to save a small part of The idea of saving the result of model checking in a counterexample produced by ic3 that is, nevertheless, order to use it for subsequent model-checking queries is sufficient in order to easily reproduce a concrete coun- extensively used in counter-example-guided abstraction terexample and then use this part in order to compute refinement (CEGAR) approach [CGJ+03], where the counterexamples for a modified design (or a modified state-explosion problem is addressed by iterative veri- property), by re-using the saved part “as is” or “patch- fication and refinement of an abstract design. Abstract ing” it to produce a valid counterexample for a modified counterexamples are analyzed and, if spurious, are used version. To improve the performance of the algorithm for in order to guide the refinement process of the abstrac- reusing counterexamples, we propose a simple technique tion for the next iteration of the verification process (see that reduces the size of the partial assignments produced also [LBBO01]). by ic3 by ≈ 30%. In this paper, we present an approach for re-using the The algorithm is implemented in the model-checking result of model-checking a design (either a proof or a engine IVE (incremental verification engine), which is counterexample) for verification of the same or a slightly a part of the formal verification platform of IBM [Rul], different property on the same or a slightly modified [Six] and is checked on the Hardware Model Checking design. Our method applies both for the case where Competition (HWMCC’10) [HWM10] benchmarks as the result of the model-checking query is negative, in well as on a real IBM hardware design. Our results show which case we re-use a counterexample, and where it is a significant speed-up (up to three orders of magnitude) positive, and we re-use the correctness proof. In fact, the compared to the re-run of the same model-checking later scenario is very common in regression verification procedure. We note that the performance of IVE is (since the previous version of the design is assumed to on par with the state-of-the art model checking tools, pass the verification successfully). which makes the speed-up achieved by our incremental verification algorithm even more significant. The basis of our work is the novel ic3 (“Incremental The rest of this paper is organized as follows. The Construction of Inductive Clauses for Indubitable Cor- necessary definitions and an overview of the ic3 algo- rectness”) model checking algorithm, recently proposed rithm are provided in Section II. We describe the main by Aaron Bradley [Bra11]. In addition to being one of contribution of this paper – the invariant finder and the the fastest bit-level verification methods [BEM11], the incremental verification algorithms – in Section III, [BBC+11], the ic3 algorithm lends itself very naturally and present the experimental results of executing our to incremental verification. implementation on known benchmarks and on an IBM We describe an algorithm for saving the relevant design in Section IV. In Section V we summarize our parts of the proof obtained by ic3, and using them contributions and discuss possible directions for future to reproduce the proof (or counterexample) on a new, work. The complete table of running times and speed- possibly modified version of the model. This requires ups achieved by our algorithm on all benchmarks from very little computational effort in case the same proof the HWMCC’10 competition appears in the full version works for the new version as well; in case the same of this paper [Rul]. proof does not apply, our method attempts to “patch” it by extracting the maximum valid part of the previously II. PRELIMINARIES saved information and using it as a basis for proving In this section, we give the necessary definitions for the new version. The latter case, where the original our algorithm and provide overviews of a SAT solver proof does not apply “as is” is the main strength of with incremental capabilities and of the ic3 algorithm. our method. Roughly speaking, the main idea of our algorithm is as follows. First we observe that producing A. Definitions (and saving) re-usable information does not incur any Throughout this paper we consider verification of significant overhead on top of the standard execution of safety properties on finite state machines (FSMs). An ic3; in addition, the saved part is usually very small. We FSM M is a tuple hX; I; T i, where X is a set of Boolean also describe a query-efficient SAT-based algorithm that state variables, such that each assignment s 2 f0; 1gX we call an invariant finder for extracting the maximum corresponds to a state of M, and the predicates I ⊆ valid part of the previously saved information.
Recommended publications
  • Experiments in Validating Formal Semantics for C
    Experiments in validating formal semantics for C Sandrine Blazy ENSIIE and INRIA Rocquencourt [email protected] Abstract. This paper reports on the design of adequate on-machine formal semantics for a certified C compiler. This compiler is an optimiz- ing compiler, that targets critical embedded software. It is written and formally verified using the Coq proof assistant. The main structure of the compiler is very strongly conditioned by the choice of the languages of the compiler, and also by the kind of semantics of these languages. 1 Introduction C is still widely used in industry, especially for developing embedded software. The main reason is the control by the C programmer of all the resources that are required for program execution (e.g. memory layout, memory allocation) and that affect performance. C programs can therefore be very efficient, but the price to pay is a programming effort. For instance, using C pointer arithmetic may be required in order to compute the address of a memory cell. However, a consequence of this freedom given to the C programmer is the presence of run-time errors such as buffer overflows and dangling pointers. Such errors may be difficult to detect in programs, because of C type casts and more generally because the C type system is unsafe. Many static analysis tools attempt to detect such errors in order to ensure safety properties that may be ensured by more recent languages such as Java. For instance, CCured is a program transformation system that adds memory safety guarantees to C programs by verifying statically that memory errors cannot oc- cur and by inserting run-time checks where static verification is insufficient [1].
    [Show full text]
  • Introduction to Model Checking and Temporal Logic¹
    Formal Verification Lecture 1: Introduction to Model Checking and Temporal Logic¹ Jacques Fleuriot [email protected] ¹Acknowledgement: Adapted from original material by Paul Jackson, including some additions by Bob Atkey. I Describe formally a specification that we desire the model to satisfy I Check the model satisfies the specification I theorem proving (usually interactive but not necessarily) I Model checking Formal Verification (in a nutshell) I Create a formal model of some system of interest I Hardware I Communication protocol I Software, esp. concurrent software I Check the model satisfies the specification I theorem proving (usually interactive but not necessarily) I Model checking Formal Verification (in a nutshell) I Create a formal model of some system of interest I Hardware I Communication protocol I Software, esp. concurrent software I Describe formally a specification that we desire the model to satisfy Formal Verification (in a nutshell) I Create a formal model of some system of interest I Hardware I Communication protocol I Software, esp. concurrent software I Describe formally a specification that we desire the model to satisfy I Check the model satisfies the specification I theorem proving (usually interactive but not necessarily) I Model checking Introduction to Model Checking I Specifications as Formulas, Programs as Models I Programs are abstracted as Finite State Machines I Formulas are in Temporal Logic 1. For a fixed ϕ, is M j= ϕ true for all M? I Validity of ϕ I This can be done via proof in a theorem prover e.g. Isabelle. 2. For a fixed ϕ, is M j= ϕ true for some M? I Satisfiability 3.
    [Show full text]
  • PROGRAM VERIFICATION Robert S. Boyer and J
    PROGRAM VERIFICATION Robert S. Boyer and J Strother Moore To Appear in the Journal of Automated Reasoning The research reported here was supported by National Science Foundation Grant MCS-8202943 and Office of Naval Research Contract N00014-81-K-0634. Institute for Computing Science and Computer Applications The University of Texas at Austin Austin, Texas 78712 1 Computer programs may be regarded as formal mathematical objects whose properties are subject to mathematical proof. Program verification is the use of formal, mathematical techniques to debug software and software specifications. 1. Code Verification How are the properties of computer programs proved? We discuss three approaches in this article: inductive invariants, functional semantics, and explicit semantics. Because the first approach has received by far the most attention, it has produced the most impressive results to date. However, the field is now moving away from the inductive invariant approach. 1.1. Inductive Assertions The so-called Floyd-Hoare inductive assertion method of program verification [25, 33] has its roots in the classic Goldstine and von Neumann reports [53] and handles the usual kind of programming language, of which FORTRAN is perhaps the best example. In this style of verification, the specifier "annotates" certain points in the program with mathematical assertions that are supposed to describe relations that hold between the program variables and the initial input values each time "control" reaches the annotated point. Among these assertions are some that characterize acceptable input and the desired output. By exploring all possible paths from one assertion to the next and analyzing the effects of intervening program statements it is possible to reduce the correctness of the program to the problem of proving certain derived formulas called verification conditions.
    [Show full text]
  • Formal Verification, Model Checking
    Introduction Modeling Specification Algorithms Conclusions Formal Verification, Model Checking Radek Pel´anek Introduction Modeling Specification Algorithms Conclusions Motivation Formal Methods: Motivation examples of what can go wrong { first lecture non-intuitiveness of concurrency (particularly with shared resources) mutual exclusion adding puzzle Introduction Modeling Specification Algorithms Conclusions Motivation Formal Methods Formal Methods `Formal Methods' refers to mathematically rigorous techniques and tools for specification design verification of software and hardware systems. Introduction Modeling Specification Algorithms Conclusions Motivation Formal Verification Formal Verification Formal verification is the act of proving or disproving the correctness of a system with respect to a certain formal specification or property. Introduction Modeling Specification Algorithms Conclusions Motivation Formal Verification vs Testing formal verification testing finding bugs medium good proving correctness good - cost high small Introduction Modeling Specification Algorithms Conclusions Motivation Types of Bugs likely rare harmless testing not important catastrophic testing, FVFV Introduction Modeling Specification Algorithms Conclusions Motivation Formal Verification Techniques manual human tries to produce a proof of correctness semi-automatic theorem proving automatic algorithm takes a model (program) and a property; decides whether the model satisfies the property We focus on automatic techniques. Introduction Modeling Specification Algorithms Conclusions
    [Show full text]
  • Formal Verification of Diagnosability Via Symbolic Model Checking
    Formal Verification of Diagnosability via Symbolic Model Checking Alessandro Cimatti Charles Pecheur Roberto Cavada ITC-irst RIACS/NASA Ames Research Center ITC-irst Povo, Trento, Italy Moffett Field, CA, U.S.A. Povo, Trento, Italy mailto:[email protected] [email protected] [email protected] Abstract observed system. We propose a new, practical approach to the verification of diagnosability, making the following contribu• This paper addresses the formal verification of di• tions. First, we provide a formal characterization of diagnos• agnosis systems. We tackle the problem of diagnos• ability problem, using the idea of context, that explicitly takes ability: given a partially observable dynamic sys• into account the run-time conditions under which it should be tem, and a diagnosis system observing its evolution possible to acquire certain information. over time, we discuss how to verify (at design time) Second, we show that a diagnosability condition for a given if the diagnosis system will be able to infer (at run• plant is violated if and only if a critical pair can be found. A time) the required information on the hidden part of critical pair is a pair of executions that are indistinguishable the dynamic state. We tackle the problem by look• (i.e. share the same inputs and outputs), but hide conditions ing for pairs of scenarios that are observationally that should be distinguished (for instance, to prevent simple indistinguishable, but lead to situations that are re• failures to stay undetected and degenerate into catastrophic quired to be distinguished. We reduce the problem events). We define the coupled twin model of the plant, and to a model checking problem.
    [Show full text]
  • Theorem Proving for Verification
    Theorem Proving for Verification John Harrison Intel Corporation CAV 2008 Princeton 9th July 2008 0 Formal verification Formal verification: mathematically prove the correctness of a design with respect to a mathematical formal specification. Actual requirements 6 Formal specification 6 Design model 6 Actual system 1 Essentials of formal verification The basic steps in formal verification: Formally model the system • Formalize the specification • Prove that the model satisfies the spec • But what formalism should be used? 2 Some typical formalisms Propositional logic, a.k.a. Boolean algebra • Temporal logic (CTL, LTL etc.) • Quantifier-free combinations of first-order arithmetic theories • Full first-order logic • Higher-order logic or first-order logic with arithmetic or set theory • 3 Expressiveness vs. automation There is usually a roughly inverse relationship: The more expressive the formalism, the less the ‘proof’ is amenable to automation. For the simplest formalisms, the proof can be so highly automated that we may not even think of it as ‘theorem proving’ at all. The most expressive formalisms have a decision problem that is not decidable, or even semidecidable. 4 Logical syntax English Formal false ⊥ true ⊤ not p p ¬ p and q p q ∧ p or q p q ∨ p implies q p q ⇒ p iff q p q ⇔ for all x, p x. p ∀ there exists x such that p x. p ∃ 5 Propositional logic Formulas built up from atomic propositions (Boolean variables) and constants , using the propositional connectives , , , and ⊥ ⊤ ¬ ∧ ∨ ⇒ . ⇔ No quantifiers or internal structure to the atomic propositions. 6 Propositional logic Formulas built up from atomic propositions (Boolean variables) and constants , using the propositional connectives , , , and ⊥ ⊤ ¬ ∧ ∨ ⇒ .
    [Show full text]
  • Safety Standards and WCET Analysis Tools Daniel Kästner, Christian Ferdinand
    Safety Standards and WCET Analysis Tools Daniel Kästner, Christian Ferdinand To cite this version: Daniel Kästner, Christian Ferdinand. Safety Standards and WCET Analysis Tools. Embedded Real Time Software and Systems (ERTS2012), Feb 2012, Toulouse, France. hal-02192406 HAL Id: hal-02192406 https://hal.archives-ouvertes.fr/hal-02192406 Submitted on 23 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Safety Standards and WCET Analysis Tools Daniel Kastner¨ Christian Ferdinand AbsInt GmbH, Science Park 1, D-66123 Saarbrucken,¨ Germany http://www.absint.com Abstract of-the-art techniques for verifying software safety re- quirements have to be applied to make sure that an appli- In automotive, railway, avionics, automation, and cation is working properly. To do so lies in the responsi- healthcare industries more and more functionality is im- bility of the system designers. Ensuring software safety plemented by embedded software. A failure of safety- is one of the goals of safety standards like DO-178B, critical software may cause high costs or even endan- DO-178C, IEC-61508, ISO-26262, or EN-50128. They ger human beings. Also for applications which are not all require to identify functional and non-functional haz- highly safety-critical, a software failure may necessitate ards and to demonstrate that the software does not vio- expensive updates.
    [Show full text]
  • QWIRE Practice: Formal Verification of Quantum Circuits In
    WIRE Practice: Formal Verification of Quantum Circuits in Coq Q Robert Rand Jennifer Paykin Steve Zdancewic [email protected] [email protected] [email protected] University of Pennsylvania We describe an embedding of the QWIRE quantum circuit language in the Coq proof assistant. This allows programmers to write quantum circuits using high-level abstractions and to prove properties of those circuits using Coq’s theorem proving features. The implementation uses higher-order abstract syntax to represent variable binding and provides a type-checking algorithm for linear wire types, ensuring that quantum circuits are well-formed. We formalize a denotational semantics that interprets QWIRE circuits as superoperators on density matrices, and prove the correctness of some simple quantum programs. 1 Introduction The last few years have witnessed the emergence of lightweight, scalable, and expressive quantum cir- cuit languages such as Quipper [10] and LIQUiS⟩ [22]. These languages adopt the QRAM model of quantum computation, in which a classical computer sends instructions to a quantum computer and re- ceives back measurement results. Quipper and LIQUiS⟩ programs classically produce circuits that can be executed on a quantum computer, simulated on a classical computer, or compiled using classical tech- niques to smaller, faster circuits. Since both languages are embedded inside general-purpose classical host languages (Haskell and F#), they can be used to build useful abstractions on top of quantum circuits, allowing for general purpose quantum programming. As is the case with classical programs, however, quantum programs in these languages will invariably have bugs. Since quantum circuits are inherently expensive to run (either simulated or on a real quantum computer) and are difficult or impossible to debug at runtime, numerous techniques have been developed to verify properties of quantum programs.
    [Show full text]
  • Overview on Formal Verification  State of the Art in Formal Verification  Ingredients in Formal Verification  Classification
    Outline Overview on Formal Verification State of the art in Formal Verification Ingredients in Formal Verification Classification P.Camurati G.Cabodi S.Nocco S.Quer Formal Methods Group Department of Computer Engineering Politecnico di Torino Torino, Italy 2 Outline Simulation: The Current Picture State of the art in Formal Verification Ingredients in Formal Verification Classification Hard to generate high quality input stimuli . A lot of user effort . No formal way to identify unexercised aspects No good measure of comprehensiveness of validation . Low bug detection rate is the main criterion . Only means that current method of stimulus generation is not achieving more. 3 Formal Verification: An Alternative to Simulation! Formal Verification is the process of constructing a proof that a target system will behave in accordance with its specification . Use of mathematical reasoning to prove that an implementation satisfies a specification . Like a mathematical proof: correctness of a formally verified hardware design holds regardless of input values . Consideration of all cases is implicit in formal verification Must establish . A formal specification (properties or high-level behavior) . A formal description of the implementation (design at higher level of abstraction — model (observationally) equivalent to implementation or implied by implementation). Formal Verification: Pros Formal Verification: Cons Just because we have proved something correct does not Complete with respect to a given property mean it will work! Correctness
    [Show full text]
  • A Case Study on Formal Verification of the Anaxagoros Hypervisor Paging System with Frama-C Allan Blanchard, N
    A case study on formal verification of the anaxagoros hypervisor paging system with frama-C Allan Blanchard, N. Kosmatov, M. Lemerre, Frédéric Loulergue To cite this version: Allan Blanchard, N. Kosmatov, M. Lemerre, Frédéric Loulergue. A case study on formal verification of the anaxagoros hypervisor paging system with frama-C. FMICS 2015 - Formal Methods for Industrial Critical Systems, Jun 2015, Oslo, Norway. pp.15-30, 10.1007/978-3-319-19458-5_2. cea-01834977 HAL Id: cea-01834977 https://hal-cea.archives-ouvertes.fr/cea-01834977 Submitted on 11 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Case Study on Formal Verification of the Anaxagoros Hypervisor Paging System with Frama-C? Allan Blanchard1;3, Nikolai Kosmatov1, Matthieu Lemerre1, and Fr´ed´ericLoulergue2;3 1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette France [email protected] 2 Inria πr2, PPS, Univ Paris Diderot, CNRS, Paris, France 3 Univ Orl´eans,INSA Centre Val de Loire, LIFO EA 4022, Orl´eans,France [email protected] Abstract. Cloud hypervisors are critical software whose formal verifi- cation can increase our confidence in the reliability and security of the cloud.
    [Show full text]
  • Overview of Formal Methods in Software Engineering
    Overview of formal methods in software engineering IOANA RODHE, MARTIN KARRESAND FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 personnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number of fi elds such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises, protection against and management of hazardous substances, IT security and the potential offered by new sensors. FOI Swedish Defence Research Agency Phone: +46 8 555 030 00 www.foi.se FOI-R--4156--SE SE-164 90 Stockholm Fax: +46 8 555 031 00 ISSN 1650-1942 December 2015 Ioana Rodhe, Martin Karresand Overview of formal methods in software engineering Bild/cover: Martin Karresand FOI-R--4156--SE Titel Översikt över formella metoder i programvaruutveckling Title Overview of formal methods in software engineering Report no FOI-R--4156--SE Month December Year 2015 Pages 50 ISSN ISSN-1650-1942 Customer The Swedish Armed Forces Project no E36077 Approved by Christian Jönsson Division Information- and Aeronautical Systems FOI Research area Armed Forces R&T area Command and control FOI Swedish Defence Research Agency This work is protected under the Act on Copyright in Literary and Artistic Works (SFS 1960:729).
    [Show full text]
  • Reflections on Industrial Use of Frama-C
    Reflections on Industrial Use of Frama-C Joseph R. Kiniry and Daniel M. Zimmerman Sound Static Analysis for Security Workshop NIST — Gaithersburg, Maryland — 28 June 2018 About Galois • established in 1999 to apply functional programming and formal methods to the problem of information assurance • over 40 active projects for numerous clients, both U.S. government (NSA, DARPA, IARPA, Homeland Security, Air Force Research Lab) and commercial (Amazon, LG, others) • over the years, we have substantially broadened our scope to high assurance everything ‹#› © 2018 Galois, Inc. !2 © 2018 Galois, Inc. Galois and Frama-C • Galois has used Frama-C on some projects • DARPA Crowdsourced Formal Verification • WP plugin to generate verification conditions • custom plugins to generate schematic assertions and program traces • DARPA SHAVE • Our clients rarely ask for formal verification in Frama-C’s “sweet spot”‹#› © 2018 Galois, Inc. !3 © 2018 Galois, Inc. SHAVE: Software/Hardware Assurance Verified End-to-End • DARPA MTO seedling for the SSITH program • a bump-in-wire encryption device • single, one-time AES key provisioning • encryption or decryption mutual exclusion • open hardware, firmware, and software • crypto realized as a MMIO RISC-V extension • custom development of a verification system for Bluespec hardware description language ‹#› © 2018 Galois, Inc. !4 © 2018 Galois, Inc. SHAVE Assurance Concept Silicon Verilog Informal Architec- BSV Netlist GDSII Artifacts RTL specs ture spec spec spec spec spec Refinement manual design automatic synthesis and manual design Technology Today's manual inspection, runtime testing, Assurance manual inspection model checking, formal verification Technique SHAVE formal verification that produces independently verifiable claims and proofs Assurance ‹#› © 2018 Galois, Inc.
    [Show full text]