Acrylamide Is Formed in the Maillard Reaction

Total Page:16

File Type:pdf, Size:1020Kb

Acrylamide Is Formed in the Maillard Reaction brief communications *Institute for Zoo and Wildlife Research, Research Unit, 33612 Cestas cedex, France 185 °C, no acrylamide was detected (detec- Department of Evolutionary Genetics, #Hudson River Foundation for Science and tion limit, 0.5 mg mol11). Glutamine and 10252 Berlin, Germany Environmental Research, New York, aspartic acid gave only trace quantities of e-mail: [email protected] New York 10011, USA acrylamide (0.5–1 mg mol11). †Institute of Zoology, University of Rostock, 1. Ludwig, A., May, B., Debus, L. & Jenneckens, I. Genetics 156, When a dry mixture of asparagine and 18051 Rostock, Germany 1933–1947 (2000). glucose was reacted at 185 °C (that is, ‡Department of Environmental Medicine, 2. King, T. L., Lubinski, B. A. & Spidle, A. P. Conserv. Genet. 2, without buffer solution), only 25 mg mol11 103–119 (2001). New York University School of Medicine, Tuxedo, 3. Brown, J. T., Beckenbach, A. T. & Smith, M. J. Mol. Biol. Evol. acrylamide was formed. Although the dry New York 10987, USA 10, 326–341 (1993). reaction is a realistic system with which to §German Archaeological Institute, 4. Magnin, E. Le Naturaliste Canadien 91, 5–20 (1964). 5. Artyukhin, E. & Vecsei, P. J. Appl. Ichthyol. 15, 35–37 (1999). simulate the later stages of baking and toast- Eurasian Division, 14195 Berlin, Germany 6. Borodin, N. Trans. Am. Fish. Soc. 55, 184–190 (1925). ing of food, it is less efficient because the ||Institute for Animal Breeding and Genetics, 7. Quantz, H. Mitt. Dt. Seefischerei-Vereins 19, 176–204 (1903). reactants are incompletely mixed in the Supplementary information accompanies this communication on University of Göttingen, 37075 Göttingen, Germany Nature’s website. absence of a solvent. Trace quantities of acryl- ¶Cemagref, Inland Living Aquatic Resources Competing financial interests: declared none. amide were produced under these condi- tions from glutamine and aspartic acid, but not from any of the other amino acids apart from methionine, which yielded 5 mg mol11. Food chemistry these intermediates (Fig. 1), in which the To test for the involvement of Strecker amino acid is decarboxylated and deami- degradation in the the production of acryl- Acrylamide is formed in nated to form an aldehyde. amide, we used 2,3-butanedione instead of We investigated whether this reaction glucose in these reactions (butanedione is the Maillard reaction could provide a possible route to acrylamide. one of several dicarbonyl compounds eports of the presence of acrylamide The amino acid asparagine should be a formed in the Maillard reaction). Acryl- in a range of fried and oven-cooked particularly suitable reactant as it already has amide was produced when asparagine was Rfoods1,2 have caused worldwide con- an amide group attached to a chain of two allowed to react with butanedione both in a cern because this compound has been carbon atoms. We therefore performed a dry system (40 mg mol11) and in buffer classified as probably carcinogenic in series of Maillard reactions between glucose (63 mg mol11). Heating asparagine on its humans3. Here we show how acrylamide and asparagine, as well as with other amino own at 185 °C did not produce acrylamide, can be generated from food components acids that do not have the correct carbon confirming the requirement for the dicar- during heat treatment as a result of the backbone for acrylamide (Fig. 1). bonyl reactant and Strecker degradation. Maillard reaction between amino acids Significant quantities of acrylamide Again, there was no significant prod- and reducing sugars. We find that (221 mg per mol of amino acid) were uction of acrylamide in either system asparagine, a major amino acid in pota- found when an equimolar mixture of from butanedione and the other amino toes and cereals, is a crucial participant asparagine and glucose was reacted at acids, with the exception of methionine in the production of acrylamide by this 185 °C in phosphate buffer in a sealed glass (6 mg mol11 in the dry system). The Streck- pathway. tube. The temperature dependence of acryl- er aldehyde formed from methionine is Products of the Maillard reaction are amide formation from asparagine indicates methional, but acrolein can also be formed, responsible for much of the flavour and that this is favoured above 100 °C and that together with ammonia: subsequent oxida- colour generated during baking and roast- very high temperatures are not necessary tion of acrolein to acrylic acid followed by ing. An important associated reaction is the (Fig. 2). In similar reactions with glucose amidation could then generate acrylamide Strecker degradation of amino acids by and glycine, cysteine or methionine at (Fig. 1). However, this reaction might be limited by its requirement for ammonia, R 500 O R Z N 1 which reacts readily with carbonyls and ZCHNH C 1 C C 2 – H2O H other Maillard intermediates. + ) C C C C R R –1 400 O OH O 2 O O O 2 The almost exclusive formation of acryl- Amino acid Dicarbonyl amide from asparagine could explain the compound H – CO2 300 occurrence of acrylamide in cooked plant- H N 2 R1 Z based foods, such as cereals and potato, CH Amino C N R 200 4 C 1 which are rich in this particular amino acid . C ketone H In potato used for the manufacture of potato O R2 C H O R2 Acrylamide (mg mol 100 + H O crisps, the dominant free amino acid is 2 11 H R CO CO R + asparagine (940 mg kg , representing 40% 1 2 5 Z C Strecker 0 of the total amino-acid content ); in wheat aldehyde NH3 + CH3 SH + O 100 120 140 160 180 200 11 CHO flour it is present at 167 mg kg , corre- CH2 CH Temperature (°C) Acrolein sponding to 14% of the total free amino Figure 2 Temperature-dependent formation of acrylamide (mg acids (our unpublished results), and a high- H2N CH2 CH COOH 11 C CH CHO per mol of amino acid) from asparagine (0.1 mmol) and glucose protein rye variety contains 173 mg kg 2 ? NH3 6 O (0.1 mmol) in 0.5 M phosphate buffer (100 m l, pH 5.5) heated in (18% of the total free amino acids) . CH CH COO– NH + ? 2 4 a sealed glass tube for 20 min. Error bars represent standard Our findings indicate that Maillard H N 2 deviations (n43). Acrylamide produced in the reaction was reactions involving asparagine can produce C CH CH2 O extracted with ethyl acetate and analysed by gas chromatography acrylamide and might explain the increased Acrylamide with mass spectrometry after derivatization to 2,3-dibromo- concentrations of acrylamide in certain Figure 1 Proposed pathways for the formation of acrylamide after propanamide7, using 2-methylacrylamide as the internal standard. plant-derived foods after cooking. Strecker degradation of the amino acids asparagine and methion- Selected ion monitoring was used to detect the analytes, with Donald S. Mottram*, Bronislaw L. ine in the presence of dicarbonyl products from the Maillard m/z 150 and 152 for acrylamide and m/z 120 and 122 for methyl- Wedzicha†, Andrew T. Dodson* reaction. In asparagine, the side chain Z is –CH2CONH2; in acrylamide. The presence of acrylamide in selected samples was *School of Food Biosciences, The University of methionine, it is –CH2CH2SCH3. confirmed in full mass spectra. Reading, Whiteknights, Reading RG6 6AP, UK 448 NATURE | VOL 419 | 3 OCTOBER 2002 | www.nature.com/nature © 2002 Nature Publishing Group brief communications e-mail: [email protected] found that pyrolysing any of these amino a 10,000 †Procter Department of Food Science, University of acids (Asn, Gln, Met, Cys) with an equimolar ) Leeds, Leeds LS2 9JT, UK amount of D-fructose, D-galactose, lactose or 1,000 sucrose all led to a significant release of acryl- ed ino acid ino 1. Rosen, J. & Hellenas, K.-E. Analyst 127, 880–882 (2002). rm 100 2. Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S. & Törnqvist, M. amide, with comparable yields from each fo e l am l o J. Agric. Food Chem. 50, 4998–5006 (2002). sugar. No acrylamide was detected when any id 3. IARC IARC Monographs on the Evaluation of Carcinogenic Risks 10 of these carbohydrates was heated alone. m er to Humans 60, 389 (1994). l p l To test whether early Maillard products crylam o 4. Belitz, H.-D. & Grosch, W. Food Chemistry (Springer, A 1 New York, 1999). such as N-glycosides could be acrylamide m µ 5. Martin, F. L. & Ames, J. M. J. Agric. Food Chem. 49, ( precursors in thermal decomposition reac- 0.1 3885–3892 (2001). tions, we measured the yields of acrylamide 510203060 6. Dembinski, E. & Bany, S. J. Plant Physiol. 138, 494–496 (1991). Time (min) at 180 °C 7. Castle, L. J. Agric. Food Chem. 41, 1261–1263 (1993). after pyrolysis (ti420 min, 180 °C) of Competing financial interests: declared none. 0.2 mmol of four different N-glycosides b OH (Fig. 1b). Yields were significant (in m mol O HO per mol N-glycoside: compound 1, 1 HO 2 NH NH2 1,3055323; 2, 1,4195278; 3,1452.7; and 4, OH Food chemistry 8.151.5) and comparable to those released CO2K O from the amino-acid and reducing-sugar 1 Acrylamide from Maillard precursors under the same O conditions. Furthermore, compound 1 was HO reaction products HO 2 NH NH confirmed as an intermediate in the OH 2 he discovery of the adventitious for- asparagine/glucose reaction by high-reso- 1 CO K O HO 2 mation of the potential cancer-causing lution mass-spectrometric analysis of a 2 agent acrylamide in a variety of foods methanol extract of the pyrolysate.
Recommended publications
  • Acrylamide in Nutrition Ayşegül Çebi* Health Sciences and Food Engineering Deparment, Giresun University, Turkey
    ition & F tr oo u d N f S o c Çebi, J Nutr Food Sci 2018, 8:2 l i e a n n r c DOI: 10.4172/2155-9600.1000e141 e u s o J Journal of Nutrition & Food Sciences ISSN: 2155-9600 Editorial Open Access Acrylamide in Nutrition Ayşegül Çebi* Health Sciences and Food Engineering Deparment, Giresun University, Turkey Introduction Acrylamide was classified as probable carcinogen (2A group) by International Agency for Research on Cancer [6]. Experimental animal Acrylamide is formed in certain types of food during the thermal studies showed that acrylamide has neurotoxic effects [7]. Acrylamide process by the Maillard reaction which asparagine, a non-essential could be toxic chemical for human body when it has been taken at the amino acid for human, reacts with reducing sugar at temperatures high levels [8]. It is converted to glycidamid which is reactive by CYP2E ° above 120 C [1]. Swedish scientists have carried out extensive studies to in human metabolism. The average acrylamide intake was estimated to elucidate the acrylamide formation machanism in some foods cooked be 0.3-0.8 μg/kg body-weight/day for human [9]. at high temperatures in 2002 [1,2]. Later, numerous scientific studies References continued to elucidate the mechanisms of acrylamide formation. Some cooking methods such as baking, frying and overcooking etc. 1. Stadler RH, Blank I, Varga N, Robert F, Hau J, et al. (2002) Acrylamide from Maillard reaction products. Nature 419: 449-450. produce acrylamide in foods. However, boiling is not a way to produce acrylamide in food.
    [Show full text]
  • ITER Peer Review on Acrolein, Acrylamide, & Acrylonitrile Meeting
    ITER Peer Review on Acrolein, Acrylamide, & Acrylonitrile Meeting Summary November 16 and 17, 1998 University of Cincinnati, College of Medicine Cincinnati, Ohio USA An independent panel of expert scientists and risk assessors met on November 16 and 17 to review risk assessment documents on acrolein, acrylamide, and acrylonitrile. This meeting was conducted by Toxicology Excellence for Risk Assessment (TERA); a non- profit organization dedicated to the best use of toxicity data in risk assessment. Expert peer reviewers donated their time and talents to provide an independent review of the assessments. A comprehensive overall review of the materials was provided by the combined experience of all the reviewers. TERA developed the acrylamide document that was reviewed at this meeting. In addition, TERA has written an inhalation cancer assessment on acrylonitrile, which was approved by an ITER panel and is now available on the ITER database. Therefore, to avoid conflict of interest, TERA staff did not select the reviewers for this meeting. Ms. Jennifer Orme- Zavaleta, a TERA Trustee, selected reviewers to provide appropriate expertise and a balance of organizational affiliation. Ms. Orme-Zavaleta chaired the acrylonitrile session and Ms. Bette Meek of Health Canada chaired the acrylamide session. At the beginning of each chemical’s discussion, the panel considered conflict of interest. Prior to the meeting, each reviewer either identified the potential for conflicts, or certified that he or she did not have a real or apparent conflict of interest associated with the chemical under review or the sponsor. ITER staff discussed possible conflicts with the reviewers and Ms. Orme-Zavaleta to determine if measures were needed to manage a potential conflict or appearance of conflict.
    [Show full text]
  • Evaluation of Asparagine Concentration As an Indicator of the Acrylamide Formation in Cereals Grown Under Organic Farming Conditions
    agronomy Article Evaluation of Asparagine Concentration as an Indicator of the Acrylamide Formation in Cereals Grown under Organic Farming Conditions Falko Stockmann 1,* , Ernst Albrecht Weber 1, Benjamin Mast 1, Pat Schreiter 2, Nikolaus Merkt 1, Wilhelm Claupein 1 and Simone Graeff-Hönninger 1 1 Institute of crop science, University of Hohenheim, D-70599 Stuttgart, Germany; [email protected] (E.A.W.); [email protected] (B.M.); [email protected] (N.M.); [email protected] (W.C.); [email protected] (S.G.-H.) 2 Chemisches und Veterinäruntersuchungsamt Stuttgart, Schaflandstraße 3/2, D-70736 Fellbach, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-942-080-10239 Received: 22 October 2018; Accepted: 4 December 2018; Published: 6 December 2018 Abstract: This study investigated the impact of organically grown cereals on the level of free asparagine (Asn) with simultaneous consideration of grain yields and flour qualities over three growing seasons in Germany. Additionally, the relation of free Asn and acrylamide (AA) was investigated. By including free Asn results of a second trial site, heritability of the trait free Asn was calculated. Free Asn was significantly influenced by species and within species by cultivars. Rye showed the highest free Asn amount, followed by einkorn, emmer, wheat, and spelt. Replacing rye with spelt would reduce free Asn by 85%. Cultivars differed in free Asn by up to 67% (wheat), 55% (spelt), and 33% (rye). Year significantly influenced free Asn levels. Heritability was high for wheat and spelt concerning locations, but regarding years, heritability was low for wheat but high for spelt and rye.
    [Show full text]
  • Acrylonitrile
    Acrylonitrile 107-13-1 Hazard Summary Exposure to acrylonitrile is primarily occupational: it is used in the manufacture of acrylic acid and modacrylic fibers. Acute (short-term) exposure of workers to acrylonitrile has been observed to cause mucous membrane irritation, headaches, dizziness, and nausea. No information is available on the reproductive or developmental effects of acrylonitrile in humans. Based on limited evidence in humans and evidence in rats, EPA has classified acrylonitrile as a probable human carcinogen (Group B1). Please Note: The main sources of information for this fact sheet are EPA's Integrated Risk Information System (IRIS) (4), which contains information on inhalation chronic toxicity of acrylonitrile and the RfC and the carcinogenic effects of acrylonitrile including the unit cancer risk for inhalation exposure, EPA's Health Effects Assessment for Acrylonitrile (6), and the Agency for Toxic Substances and Disease Registry's (ATSDR's) Toxicological Profile for Acrylonitrile (1). Uses Acrylonitrile is primarily used in the manufacture of acrylic and modacrylic fibers. It is also used as a raw material in the manufacture of plastics (acrylonitrile-butadiene-styrene and styrene-acrylonitrile resins), adiponitrile, acrylamide, and nitrile rubbers and barrier resins. (1,6) Sources and Potential Exposure Human exposure to acrylonitrile appears to be primarily occupational, via inhalation. (1) Acrylonitrile may be released to the ambient air during its manufacture and use. (1) Assessing Personal Exposure Acrylonitrile
    [Show full text]
  • Trade Guidelines on Reducing Acrylamide in Food
    f Purpose This set of guidelines provides recommendations to help the trade minimise the formation of acrylamide in food, especially potato and cereal based products, and stir-fried vegetables, with reference to the Codex Code of Practice for the Reduction of Acrylamide in Foods (CAC/RCP 67-2009) and the findings of the First Hong Kong Total Diet Study. The Guidelines is applicable to all manufacturers and caterers, in particular those producing high temperature processed potato and/or cereal based products and serving stir-fried vegetables. Background Acrylamide is an industrial chemical used in the manufacture of polyacrylamides. In 2002, studies conducted in Sweden for the first time found that relatively high levels of acrylamide are present in a variety of fried and baked carbohydrate-rich foods. Following to the discovery of acrylamide in food, many food authorities including the Centre for Food Safety (CFS) have analysed the acrylamide level in different foods. The studies conducted by the CFS showed that relatively high level of acrylamide was present in some high temperature processed potato products such as potato chips, cereal products such as biscuits, as well as some stir-fried vegetables (Table 1). Moreover, the First Hong Kong Total Diet Study on acrylamide revealed that stir-fried vegetables were found to be the major sources of acrylamide exposure of the local population. Table 1: Acrylamide levels found in some local food Food items Acrylamide level range (μg/kg) Potato chips 160 – 3 000 Other crisps <3 – 480 French fries and waffle fries 74 – 890 Baked potatoes 15 – 160 Biscuits 32 – 2 100 Breakfast cereals 29 – 460 Stir-fried vegetables 1– 360 Toxicity of acrylamide The adverse effects of acrylamide on the nervous system in humans following high occupational and accidental exposures are well-documented.
    [Show full text]
  • Synthesis, Characterization and Rheological Behavior of Ph Sensitive Poly(Acrylamide-Co-Acrylic Acid) Hydrogels
    Arabian Journal of Chemistry (2013) xxx, xxx–xxx King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Synthesis, characterization and rheological behavior of pH sensitive poly(acrylamide-co-acrylic acid) hydrogels Seddiki Nesrinne, Aliouche Djamel * Laboratory of Polymers Treatment and Forming, F.S.I., M’Hamed Bougara University, Boumerdes 35000, Algeria Received 23 November 2012; accepted 16 November 2013 KEYWORDS Abstract Poly(acrylamide-co-acrylic acid) poly(AAm-co-AAc) hydrogels were prepared by free Poly(acrylamide-co-acrylic radical polymerization initiated by redox initiators of ammonium peroxodisulphate (APS) and acid); N,N,N0,N0-tetramethyl ethylene diamine (TEMED); N,N0-methylene bisacrylamide (BIS) was pH sensitive hydrogel; employed as a crosslinking agent. The copolymers were characterized by infrared spectroscopy Glass temperature; (FT-IR), differential scanning calorimetry (DSC), dynamic rheology and swelling measurements. Rheological behavior; Results indicated that the strong interaction in the hydrogels resulted in the formation of a more Dynamic oscillation test; stable copolymer. The single glass transition temperature (Tg) in sample suggested that the two Swelling polymers into the hydrogel have a good miscibility. The elastic modulus (G0) and linear viscoelastic region increased with increase in PAAc concentration. The oscillation time sweep study of the hydrogels exhibited a flat G0 indicating a stable structure and good mechanical strength. In the swelling measurements, the gels exhibited appreciable water uptake and were highly sensitive to pH environment. So the poly(AAm-co-AAc) hydrogel will have promising application in pharma- ceutical use and in biomaterials. ª 2013 King Saud University. Production and hosting by Elsevier B.V.
    [Show full text]
  • Troubleshooting SDS-PAGE-0410
    TROUBLESHOOTING SODIUM DODECYL SULFATE- POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE) Troubleshooting This troubleshooting document gives the problem, possible cause and suggested solution for problems during the SDS-PAGE application: Problem: Weak of missing protein bands The protein/antigen quantity Increase the sample concentration. is below the detection level of Use a more sensitive stain. the stain The proteins are not fixed in Use a stain which will fix the proteins. the gel Use a gel fixing solution. Proteins have ran off the gel Use a SDS-PAGE gel with a higher % acrylamide. Proteins are degraded Make sure there is no protease contamination. Ensure the samples did not freeze-thaw. The small-peptides (<4 kDa) Fix the gel with 5% glutaraldehyde. did not fix in the gel Rinse the gel well with water before staining. Problem: Poor band resolution The concentration of the Decrease protein concentration. protein is too high Sample volume is too large Increase protein concentration. Gel concentration is not If the size of the protein is unknown, use a 4%-20% gradient gel. correct The gel is too old Order fresh precast gels or cast a fresh gel . There is excess micelle Do not exceed 200 µg SDS/30 µl sample. formation The run is too fast because Increase the buffer concentration. buffers are too diluted The run is too fast because Decrease the voltage by 25-50%. the current is too high The protein bands are not Insufficient electrophoresis has taken place, prolong the run. sufficiently resolved The gels pore size is not correct for the proteins that need to be separated.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation
    International Journal of Molecular Sciences Review Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation Geni Rodrigues Sampaio 1,* , Glória Maria Guizellini 1 , Simone Alves da Silva 1,2 , Adriana Palma de Almeida 2 , Ana Clara C. Pinaffi-Langley 1 , Marcelo Macedo Rogero 1 , Adriano Costa de Camargo 3,* and Elizabeth A. F. S. Torres 1 1 Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Doutor Arnaldo Ave, Sao Paulo 01246-904, Brazil; [email protected] (G.M.G.); [email protected] (S.A.d.S.); napinaffi@gmail.com (A.C.C.P.-L.); [email protected] (M.M.R.); [email protected] (E.A.F.S.T.) 2 Organic Contaminant Core, Contaminant Centre, Adolfo Lutz Institute, 355 Doutor Arnaldo Ave, Sao Paulo 01246-000, Brazil; [email protected] 3 Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile * Correspondence: [email protected] (G.R.S.); [email protected] (A.C.d.C.) Abstract: Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds comprised of carbon and hydrogen molecules in a cyclic arrangement. PAHs are associated with risks to human health, especially carcinogenesis. One form of exposure to these compounds is through ingestion of con- Citation: Sampaio, G.R.; Guizellini, taminated food, which can occur during preparation and processing involving high temperatures G.M.; da Silva, S.A.; de Almeida, A.P.; (e.g., grilling, smoking, toasting, roasting, and frying) as well as through PAHs present in the soil, Pinaffi-Langley, A.C.C.; Rogero, air, and water (i.e., environmental pollution).
    [Show full text]
  • Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- Cer, a Cohort of Swedish Men, the U.S
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- cer, a cohort of Swedish men, the U.S. Nurses’ Health Study, and the CAS No. 79-06-1 Danish Diet, Cancer, and Health Study. In addition, several case- control studies (most of which used food-frequency questionnaires) Reasonably anticipated to be a human carcinogen assessed cancer and dietary exposure of Swedish, French, and U.S. First listed in the Sixth Annual Report on Carcinogens (1991) populations to acrylamide. The tissue site studied most frequently Also known as 2-propenamide was the breast. These studies found no overall association between breast cancer and dietary exposure to acrylamide; however, some, H C NH2 but not all, studies reported an association between acrylamide ex- H2C C posure and a specific type of breast cancer (sex-hormone-receptor- O positive cancer in post-menopausal women). The Danish study used Carcinogenicity acrylamide-hemoglobin adducts to assess exposure; however, these adducts are not source-specific, but reflect both dietary exposure Acrylamide is reasonably anticipated to be a human carcinogen based and exposure from other sources, such as smoking. Two of three pro- on sufficient evidence of carcinogenicity from studies in experimen- spective cohort studies reported increased risks of endometrial and tal animals. ovarian cancer, but a case-control study found no increased risk of ovarian cancer. Most of the studies evaluating prostate and colorectal Cancer Studies in Experimental Animals cancer did not find increased risks associated with dietary exposure Acrylamide caused tumors in two rodent species, at several different to acrylamide.
    [Show full text]
  • Acrylamide in Food Products
    cess Pro ing d & o o T F e c f h o n l Krishnakumar and Visvanathan, J Food Process Technol 2014, 5:7 o a l Journal of Food n o r g DOI: 10.4172/2157-7110.1000344 u y o J ISSN: 2157-7110 Processing & Technology Review Article Open Access Acrylamide in Food Products: A Review Krishnakumar T1* and Visvanathan R2 1Department of Food and Agricultural Process Engineering, Tamil Nadu Agricultural University, Coimbatore, India 2Post Harvest Technology Centre, Tamil Nadu Agricultural University, Coimbatore, India Abstract Acrylamide or 2-propenamide an industrial chemical formed in some foods particularly starchy foods during heating process such as baking, frying and roasting. Acrylamide is proven to be carcinogenic in animals and a probable human carcinogen mainly formed in foods by the reaction of asparagine (free amino acid) with reducing sugars (glucose and fructose) as part of the Maillard reaction during heating under high temperature and low moisture conditions. The main aim of this review is to summarize the results of academic and industrial research on occurrence, dietary exposure, formation mechanism and mitigation measures of acrylamide in bakery, cereal and potato food products. Keywords: Acrylamide; Asparagine; Maillard reaction; Bakery; intake have been made for populations in many countries consist of Cereal; Potato products different dietary records [21-33]. These studies found that the amount of acrylamide was extremely higher in fried potato products (such as Introduction French fries and potato chips) followed by cereals, crisp breads, biscuits and other bakery products. Concentration and dietary intake of food Acrylamide (C H NO; 2-propenamide), is a colourless, non-volatile 3 5 have significant variations, which depends upon cooking methods crystalline solid, soluble in water and has a molecular weight of 71.08 [21,34-42].
    [Show full text]
  • Electrophoretic Properties of Sodium Dodecyl Sulfate and Related Changes in Its Concentration in SDS-Polyacrylamide Gel Electrophoresis
    J. Biochem., 78, 349-354 (1975) Electrophoretic Properties of Sodium Dodecyl Sulfate and Related Changes in Its Concentration in SDS-polyacrylamide Gel Electrophoresis Kanenobu KUBO,* Toshizo ISEMURA,* and Toshio TAKAGI**,' *Faculty of Pharmacy , Kinki University, Higashiosaka, Osaka 577, and **Institute for Protein Research, Osaka University, Suita, Osaka 565 Received for publication, February 14, 1975 Sodium dodecyl sulfate (SDS) in a protein sample solution migrates in SDS-polyacryl amide gel electrophoresis as a band with a mobility higher than those of protein bands. Behind this band, which is mostly composed of SDS micelles, SDS concen tration is raised uniformly in a gel column as a result of the retardation effect of the gel matrix on SDS micelles. Electrophoretic patterns of SDS were obtained when SDS was omitted from various portions of the gel electrophoretic system. Sodium dodecyl sulfate (SDS) undoubtedly plays properties of SDS in polyacrylamide gel. a key role in SDS-polyacrylamide gel electro phoresis (1) which is now extensively used EXPERIMENTAL PROCEDURE for analytical and preparative purposes. Never Sodium dodecyl sulfate (SDS) was obtained as theless, the behavior of SDS in electrophoresis "sodium lauryl sulfate" (specially prepared re is not well understood. In a previous paper (2), an anionic aromatic surfactant was used agent) from Nakarai Chemicals, and used with in place of SDS in polyacrylamide gel electro out further purification. The critical micelle phoresis, and its distribution in a gel column concentration was determined to be 8.1 mm was examined by UV-scanning. It was found in water and 0.95 mM in 0.12 M sodium phos that micelles derived from excess surfactant phate buffer, pH 7.2, at 25? by the conductance in a sample solution migrate as a distinct and drop weight methods respectively.
    [Show full text]
  • Acrylonitrile
    ACRYLONITRILE This substance was considered by previous Working Groups, in February 1978 (IARC, 1979) and March 1987 (IARC, 1987a). Since that time, new data have become available, and these have been incorporated into the monograph and taken into consi- deration in the present evaluation. 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 107-13-1 Chem. Abstr. Name: 2-Propenenitrile Synonyms: AN; cyanoethylene; propenenitrile; VCN; vinyl cyanide 1.1.2 Structural and molecular formulae and relative molecular mass H2 CCHCN C3H3N Relative molecular mass: 53.06 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless liquid (Verschueren, 1996) (b) Boiling-point: 77.3°C (Lide, 1995) (c) Melting-point: –83.5°C (Lide, 1995) 20 (d) Density: d4 0.8060 (Lide, 1995) (e) Spectroscopy data: Infrared, nuclear magnetic resonance and mass spectral data have been reported (Sadtler Research Laboratories, 1980; Brazdil, 1991) (f) Solubility: Soluble in water (7.35 mL/100 mL at 20°C); very soluble in acetone, benzene, diethyl ether and ethanol (Lide, 1995; Budavari, 1996) (g) Volatility: Vapour pressure, 13.3 kPa at 23°C; relative vapour density (air = 1), 1.83 (Verschueren, 1996) (h) Stability: Flash-point (open cup), 0°C; flammable; polymerizes spontaneously, particularly in the absence of oxygen, on exposure to visible light and in contact with concentrated alkali (Budavari, 1996) (i) Explosive limits: Lower, 3.05%; upper, 17.0% (Budavari, 1996) (j) Octanol/water partition coefficient (P): log P, 0.25 (Hansch et al., 1995) –43– 44 IARC MONOGRAPHS VOLUME 71 (k) Conversion factor: mg/m3 = 2.17 × ppm1 1.1.4 Technical products and impurities Acrylonitrile of 99.5–99.7% purity is available commercially, with the following specifications (ppm by weight, maximum): acidity (as acetic acid), 10; acetone, 75; ace- tonitrile, 300; acrolein, 1; hydrogen cyanide, 5; total iron, 0.1; oxazole, 10; peroxides (as hydrogen peroxide), 0.2; water, 0.5%; and nonvolatile matter, 100.
    [Show full text]